論文の概要: Federated and Transfer Learning for Cancer Detection Based on Image Analysis
- arxiv url: http://arxiv.org/abs/2405.20126v1
- Date: Thu, 30 May 2024 15:07:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 13:58:47.025105
- Title: Federated and Transfer Learning for Cancer Detection Based on Image Analysis
- Title(参考訳): 画像解析に基づくがん検出のためのフェデレーション・トランスファー学習
- Authors: Amine Bechar, Youssef Elmir, Yassine Himeur, Rafik Medjoudj, Abbes Amira,
- Abstract要約: 本稿では,画像解析に基づくがん検出におけるフェデレートラーニング(FL)とトランスファーラーニング(TL)の役割について論じる。
FLは、集中的なデータ共有を必要とせずに、複数のサイトに分散したデータ上での機械学習モデルのトレーニングを可能にする。
TLは、あるタスクから別のタスクへの知識の転送を可能にする。
- 参考スコア(独自算出の注目度): 2.696333064387343
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This review article discusses the roles of federated learning (FL) and transfer learning (TL) in cancer detection based on image analysis. These two strategies powered by machine learning have drawn a lot of attention due to their potential to increase the precision and effectiveness of cancer diagnosis in light of the growing importance of machine learning techniques in cancer detection. FL enables the training of machine learning models on data distributed across multiple sites without the need for centralized data sharing, while TL allows for the transfer of knowledge from one task to another. A comprehensive assessment of the two methods, including their strengths, and weaknesses is presented. Moving on, their applications in cancer detection are discussed, including potential directions for the future. Finally, this article offers a thorough description of the functions of TL and FL in image-based cancer detection. The authors also make insightful suggestions for additional study in this rapidly developing area.
- Abstract(参考訳): 本稿では,画像解析に基づくがん検出におけるフェデレートラーニング(FL)とトランスファーラーニング(TL)の役割について論じる。
機械学習を利用したこれらの2つの戦略は、がん検出における機械学習技術の重要性の高まりを踏まえて、がん診断の精度と有効性を高める可能性から、多くの注目を集めている。
FLは、集中的なデータ共有を必要とせずに、複数のサイトに分散したデータ上で機械学習モデルのトレーニングを可能にし、TLは、あるタスクから別のタスクへの知識の転送を可能にする。
強みと弱みを含む2つの手法を総合的に評価する。
今後,癌検出への応用について検討し,今後の可能性についても検討する。
最後に,画像ベース癌検出におけるTLとFLの機能について概説する。
著者らはまた、この急速に発展している領域におけるさらなる研究について、洞察に富んだ提案をしている。
関連論文リスト
- Deep BI-RADS Network for Improved Cancer Detection from Mammograms [3.686808512438363]
テキスト型BI-RADS病変記述子と視覚マンモグラムを併用した新しいマルチモーダル手法を提案する。
提案手法は,これらの異なるモダリティを効果的に融合させるために,反復的な注意層を用いる。
CBIS-DDSMデータセットの実験では、すべてのメトリクスで大幅に改善されている。
論文 参考訳(メタデータ) (2024-11-16T21:32:51Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
本研究では, 高精度ながん検出を実現するための新しいテキスト誘導学習法を提案する。
本手法は,大規模プレトレーニングVLMによる臨床知識の活用により,一般化能力の向上が期待できる。
論文 参考訳(メタデータ) (2024-05-23T07:03:38Z) - Harnessing Transformers: A Leap Forward in Lung Cancer Image Detection [2.8927500190704567]
本稿では,画像解析に基づくがん検出におけるトランスファーラーニング(TL)とトランスフォーマーの役割について論じる。
人工知能(AI)分野のトレンドとして,患者の体内における癌細胞の同定が注目されている。
論文 参考訳(メタデータ) (2023-11-16T14:50:42Z) - Post-Hoc Explainability of BI-RADS Descriptors in a Multi-task Framework
for Breast Cancer Detection and Segmentation [48.08423125835335]
MT-BI-RADSは乳房超音波(BUS)画像における腫瘍検出のための新しい深層学習手法である。
放射線科医が腫瘍の悪性度を予測するための意思決定プロセスを理解するための3つのレベルの説明を提供する。
論文 参考訳(メタデータ) (2023-08-27T22:07:42Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z) - Adversarial learning of cancer tissue representations [6.395981404833557]
手動のアノテーションを必要とせずに,癌組織の特徴表現を抽出する逆学習モデルを提案する。
これらの表現は乳癌,大腸癌,肺がんの3種類の形態学的特徴を同定することができる。
以上の結果から,本モデルが実際の組織試料の特異な表現特性を捉え,腫瘍進展と腫瘍微小環境のさらなる理解の道を開くことが示唆された。
論文 参考訳(メタデータ) (2021-08-04T18:00:47Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - An Attention Mechanism with Multiple Knowledge Sources for COVID-19
Detection from CT Images [1.6882040908691862]
本稿では,医師の判断に関連する有用な情報ソースを活用することで,いくつかの基準線の性能を向上させるための新しい戦略を提案する。
学習中の注意機構を介して,学習ネットワークから抽出した感染領域と熱マップをグローバル画像に統合する。
この手法は, 騒音に対する耐性を高めるだけでなく, 局所的な病変領域に焦点を絞ったネットワークを誘導する。
論文 参考訳(メタデータ) (2020-09-23T09:05:24Z) - A Novel and Efficient Tumor Detection Framework for Pancreatic Cancer
via CT Images [21.627818410241552]
本稿では,新しい膵腫瘍検出フレームワークを提案する。
提案手法のコントリビューションは,Augmented Feature Pyramid Network,Self-Adaptive Feature Fusion,Dependencies Computation Moduleの3つのコンポーネントから構成される。
実験により,AUCの0.9455による検出において,他の最先端手法よりも優れた性能が得られた。
論文 参考訳(メタデータ) (2020-02-11T15:48:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。