論文の概要: Deep BI-RADS Network for Improved Cancer Detection from Mammograms
- arxiv url: http://arxiv.org/abs/2411.10894v1
- Date: Sat, 16 Nov 2024 21:32:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:33:21.818317
- Title: Deep BI-RADS Network for Improved Cancer Detection from Mammograms
- Title(参考訳): マンモグラフィーによる癌検出のためのディープBI-RADSネットワーク
- Authors: Gil Ben-Artzi, Feras Daragma, Shahar Mahpod,
- Abstract要約: テキスト型BI-RADS病変記述子と視覚マンモグラムを併用した新しいマルチモーダル手法を提案する。
提案手法は,これらの異なるモダリティを効果的に融合させるために,反復的な注意層を用いる。
CBIS-DDSMデータセットの実験では、すべてのメトリクスで大幅に改善されている。
- 参考スコア(独自算出の注目度): 3.686808512438363
- License:
- Abstract: While state-of-the-art models for breast cancer detection leverage multi-view mammograms for enhanced diagnostic accuracy, they often focus solely on visual mammography data. However, radiologists document valuable lesion descriptors that contain additional information that can enhance mammography-based breast cancer screening. A key question is whether deep learning models can benefit from these expert-derived features. To address this question, we introduce a novel multi-modal approach that combines textual BI-RADS lesion descriptors with visual mammogram content. Our method employs iterative attention layers to effectively fuse these different modalities, significantly improving classification performance over image-only models. Experiments on the CBIS-DDSM dataset demonstrate substantial improvements across all metrics, demonstrating the contribution of handcrafted features to end-to-end.
- Abstract(参考訳): 乳がん検出のための最先端モデルでは、診断精度を高めるためにマルチビューマンモグラフィを利用するが、しばしば視覚マンモグラフィーデータのみに焦点を当てる。
しかし、放射線学者は、乳がん検診を強化するための追加情報を含む貴重な病変記述器を文書化している。
重要な疑問は、ディープラーニングモデルがこれらのエキスパート由来の機能の恩恵を受けることができるかどうかである。
そこで本研究では,BI-RADS病変記述子と視覚マンモグラムを併用した新しいマルチモーダル手法を提案する。
本手法では,これらの異なるモードを効果的に融合させるため,反復的な注意層を用い,画像のみのモデルよりも分類性能を著しく向上する。
CBIS-DDSMデータセットの実験では、すべてのメトリクスで大幅に改善され、エンドツーエンドへの手作り機能の提供が実証された。
関連論文リスト
- Features Fusion for Dual-View Mammography Mass Detection [1.5146068448101746]
両マンモグラフィビューを同時に処理できるMAMM-Netという新しいモデルを提案する。
本実験は,従来の最先端モデルと比較して,PublicMデータセット上での優れた性能を示す。
論文 参考訳(メタデータ) (2024-04-25T16:30:30Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - Intelligent Breast Cancer Diagnosis with Heuristic-assisted
Trans-Res-U-Net and Multiscale DenseNet using Mammogram Images [0.0]
乳癌(BC)は、女性のがん関連死亡率に大きく寄与する。
悪性の腫瘤を正確に識別することは 依然として困難です
マンモグラフィ画像を用いたBCGスクリーニングのための新しい深層学習手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T10:22:14Z) - Post-Hoc Explainability of BI-RADS Descriptors in a Multi-task Framework
for Breast Cancer Detection and Segmentation [48.08423125835335]
MT-BI-RADSは乳房超音波(BUS)画像における腫瘍検出のための新しい深層学習手法である。
放射線科医が腫瘍の悪性度を予測するための意思決定プロセスを理解するための3つのレベルの説明を提供する。
論文 参考訳(メタデータ) (2023-08-27T22:07:42Z) - MammoDG: Generalisable Deep Learning Breaks the Limits of Cross-Domain
Multi-Center Breast Cancer Screening [4.587250201300601]
マンモグラフィーは高い変動性とマンモグラフィーのパターンのために課題を提起する。
MammoDGはクロスドメインマルチセンターマンモグラフィーデータの汎用的で信頼性の高い解析のための新しいディープラーニングフレームワークである。
論文 参考訳(メタデータ) (2023-08-02T10:10:22Z) - A novel multi-view deep learning approach for BI-RADS and density
assessment of mammograms [0.5039813366558306]
BI-RADSのための新しい多視点DL手法とマンモグラムの密度評価を提案する。
提案手法はまず,各ビューで特徴抽出を行うディープ畳み込みネットワークを分離して展開する。
抽出した特徴を積み重ねてLight Gradient Boosting Machine (LightGBM) に入力し、BI-RADSと密度スコアを予測する。
論文 参考訳(メタデータ) (2021-12-08T10:59:17Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z) - Act Like a Radiologist: Towards Reliable Multi-view Correspondence
Reasoning for Mammogram Mass Detection [49.14070210387509]
マンモグラム質量検出のための解剖学的グラフ畳み込みネットワーク(AGN)を提案する。
AGNはマンモグラムの質量検出用に調整されており、既存の検出手法を多視点推論能力で実現している。
2つの標準ベンチマークの実験によると、AGNは最先端のパフォーマンスを大幅に上回っている。
論文 参考訳(メタデータ) (2021-05-21T06:48:34Z) - Attention Model Enhanced Network for Classification of Breast Cancer
Image [54.83246945407568]
AMENはマルチブランチ方式で、画素ワイドアテンションモデルとサブモジュールの分類で定式化される。
微妙な詳細情報に焦点を合わせるため、サンプル画像は、前枝から生成された画素対応の注目マップによって強化される。
3つのベンチマークデータセットで行った実験は、様々なシナリオにおいて提案手法の優位性を実証している。
論文 参考訳(メタデータ) (2020-10-07T08:44:21Z) - Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms [0.4297070083645048]
本稿では, マンモグラムの病変を現実的に合成し, 除去するデータ拡張のための, GANモデルを提案する。
自己注意と半教師付き学習コンポーネントにより、U-netベースのアーキテクチャは高解像度(256x256px)の出力を生成することができる。
論文 参考訳(メタデータ) (2020-05-29T21:23:00Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。