論文の概要: InstructionCP: A fast approach to transfer Large Language Models into target language
- arxiv url: http://arxiv.org/abs/2405.20175v1
- Date: Thu, 30 May 2024 15:45:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 13:39:08.970590
- Title: InstructionCP: A fast approach to transfer Large Language Models into target language
- Title(参考訳): InstructionCP: 大規模言語モデルをターゲット言語に変換するための高速なアプローチ
- Authors: Kuang-Ming Chen, Hung-yi Lee,
- Abstract要約: InsCPは命令タグをCPプロセスに統合し、新しい言語を習得する際の会話能力の喪失を防ぐ。
実験の結果,InsCPは人間のフィードバック能力から会話と強化学習を維持していることがわかった。
このアプローチでは、高品質な命令追従データを0.1億トークンしか必要とせず、それによってリソース消費が減少する。
- 参考スコア(独自算出の注目度): 55.2480439325792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid development of large language models (LLMs) in recent years has largely focused on English, resulting in models that respond exclusively in English. To adapt these models to other languages, continual pre-training (CP) is often employed, followed by supervised fine-tuning (SFT) to maintain conversational abilities. However, CP and SFT can reduce a model's ability to filter harmful content. We propose Instruction Continual Pre-training (InsCP), which integrates instruction tags into the CP process to prevent loss of conversational proficiency while acquiring new languages. Our experiments demonstrate that InsCP retains conversational and Reinforcement Learning from Human Feedback (RLHF) abilities. Empirical evaluations on language alignment, reliability, and knowledge benchmarks confirm the efficacy of InsCP. Notably, this approach requires only 0.1 billion tokens of high-quality instruction-following data, thereby reducing resource consumption.
- Abstract(参考訳): 近年の大規模言語モデル(LLM)の急速な発展は、主に英語に焦点を合わせており、結果として、英語でのみ応答するモデルが生み出されている。
これらのモデルを他の言語に適応させるためには、連続事前学習(CP)がよく用いられ、続いて、会話能力を維持するために教師付き微調整(SFT)が用いられる。
しかし、CPとSFTは有害なコンテンツをフィルタリングするモデルの能力を減らすことができる。
Instruction Continual Pre-training (InsCP)を提案する。これはCPプロセスに命令タグを統合することで、新しい言語を習得しながら会話能力の喪失を防止する。
実験の結果,InsCPはヒューマンフィードバック(RLHF)による会話・強化学習の能力を維持していることがわかった。
言語アライメント、信頼性、知識ベンチマークに関する実証的な評価により、InsCPの有効性が確認された。
特に、このアプローチでは、高品質な命令フォローデータに0.1億のトークンしか必要とせず、それによってリソース消費が減少する。
関連論文リスト
- Investigating Language-Specific Calibration For Pruning Multilingual Large Language Models [11.421452042888523]
多様な言語,タスク,モデル,および SotA プルーニング技術を用いて,多言語モデルをプルーニングするためのキャリブレーション言語を比較した。
例えば、ターゲット言語を校正することで、効率的に言語モデリング能力を維持することができるが、必ずしも下流タスクに利益をもたらすとは限らない。
論文 参考訳(メタデータ) (2024-08-26T16:29:13Z) - Efficiently Adapting Pretrained Language Models To New Languages [9.33333013114014]
近年の大規模言語モデル (LLM) は低リソース言語に準最適性能を示す。
我々は,既存の学習済みLLMをこれらの問題に対処することなく,新しい言語に効率的に適応する方法について検討する。
論文 参考訳(メタデータ) (2023-11-09T20:59:08Z) - Headless Language Models: Learning without Predicting with Contrastive
Weight Tying [0.11510009152620666]
言語モデルの自己教師付き事前訓練は通常、広範囲なトークン語彙上の確率分布を予測する。
確率予測から脱却し、コンストラッシブウェイトタイリング(CWT)を介してコントラッシブな方法で入力埋め込みを再構築することに焦点を当てた革新的な手法を提案する。
同様の計算予算における古典的 LM と比較して, 有意な +1.6 GLUE スコアの増加と, 顕著な +2.7 LAMBADA の精度向上が観察された。
論文 参考訳(メタデータ) (2023-09-15T12:20:00Z) - Improving Language Plasticity via Pretraining with Active Forgetting [63.36484652568976]
本稿では,新しい言語に迅速に適応可能な PLM を作成する簡単な方法として,事前学習中に能動的に忘れる機構を提案する。
RoBERTaを用いた実験では、忘れるメカニズムで事前訓練されたモデルは、言語適応中により高速な収束を示す。
論文 参考訳(メタデータ) (2023-07-03T17:12:44Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - Pre-Trained Language-Meaning Models for Multilingual Parsing and
Generation [14.309869321407522]
談話表現構造(DRS)に基づく多言語事前学習言語意味モデルを導入する。
DRSは言語中立であるため、非英語タスクの性能向上のために言語間移動学習が採用されている。
自動評価の結果,本手法は多言語DSS解析とDSS-to-text生成の両タスクにおいて,最高の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-05-31T19:00:33Z) - Bridging the Gap between Language Models and Cross-Lingual Sequence
Labeling [101.74165219364264]
大規模言語間事前学習言語モデル (xPLM) は、言語間シーケンスラベリングタスクにおいて有効であることを示す。
大きな成功にもかかわらず、事前学習と微調整の段階の間には訓練対象のギャップがあるという経験的観察を描いている。
本稿では,まず,言語間インフォーマティブ・スパン・マスキング(CLISM)と呼ばれるxSLのための事前学習タスクを設計し,目的のギャップを解消する。
第2に、コントラスト学習を利用して入力並列表現間の一貫性を促進するContrAstive-Consistency Regularization (CACR)を提案する。
論文 参考訳(メタデータ) (2022-04-11T15:55:20Z) - Towards Lifelong Learning of Multilingual Text-To-Speech Synthesis [87.75833205560406]
本研究は,多言語テキスト音声(TTS)システムを学習するための生涯学習手法を提案する。
すべての言語からプールされたデータを必要としないため、ストレージと計算の負担が軽減される。
論文 参考訳(メタデータ) (2021-10-09T07:00:38Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
言語間機械読解(CLMRC)は、ローソース言語に大規模なデータセットがないため、依然として難しい問題である。
本稿では,Language Branch Machine Reading (LBMRC) という新しい拡張手法を提案する。
LBMRCは、個々の言語に精通したMultiple Machine Read comprehension (MRC)モデルを訓練する。
複数の言語分岐モデルから全ての対象言語に対する単一モデルへのアマルガメート知識の多言語蒸留アプローチを考案する。
論文 参考訳(メタデータ) (2020-10-27T13:12:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。