A Survey Study on the State of the Art of Programming Exercise Generation using Large Language Models
- URL: http://arxiv.org/abs/2405.20183v1
- Date: Thu, 30 May 2024 15:49:34 GMT
- Title: A Survey Study on the State of the Art of Programming Exercise Generation using Large Language Models
- Authors: Eduard Frankford, Ingo Höhn, Clemens Sauerwein, Ruth Breu,
- Abstract summary: This paper analyzes Large Language Models (LLMs) with regard to their programming exercise generation capabilities.
Through a survey study, we defined the state of the art, extracted their strengths and weaknesses and proposed an evaluation matrix.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper analyzes Large Language Models (LLMs) with regard to their programming exercise generation capabilities. Through a survey study, we defined the state of the art, extracted their strengths and weaknesses and finally proposed an evaluation matrix, helping researchers and educators to decide which LLM is the best fitting for the programming exercise generation use case. We also found that multiple LLMs are capable of producing useful programming exercises. Nevertheless, there exist challenges like the ease with which LLMs might solve exercises generated by LLMs. This paper contributes to the ongoing discourse on the integration of LLMs in education.
Related papers
- Evaluating Language Models for Generating and Judging Programming Feedback [4.743413681603463]
Large language models (LLMs) have transformed research and practice in a wide range of domains.
We evaluate the efficiency of open-source LLMs in generating high-quality feedback for programming assignments.
arXiv Detail & Related papers (2024-07-05T21:44:11Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
We introduce AlphaLLM for the self-improvements of Large Language Models.
It integrates Monte Carlo Tree Search (MCTS) with LLMs to establish a self-improving loop.
Our experimental results show that AlphaLLM significantly enhances the performance of LLMs without additional annotations.
arXiv Detail & Related papers (2024-04-18T15:21:34Z) - Large Language Models: A Survey [69.72787936480394]
Large Language Models (LLMs) have drawn a lot of attention due to their strong performance on a wide range of natural language tasks.
LLMs' ability of general-purpose language understanding and generation is acquired by training billions of model's parameters on massive amounts of text data.
arXiv Detail & Related papers (2024-02-09T05:37:09Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - An Empirical Study on Usage and Perceptions of LLMs in a Software
Engineering Project [1.433758865948252]
Large Language Models (LLMs) represent a leap in artificial intelligence, excelling in tasks using human language(s)
In this paper, we analyze the AI-generated code, prompts used for code generation, and the human intervention levels to integrate the code into the code base.
Our findings suggest that LLMs can play a crucial role in the early stages of software development.
arXiv Detail & Related papers (2024-01-29T14:32:32Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Breaking the Silence: the Threats of Using LLMs in Software Engineering [12.368546216271382]
Large Language Models (LLMs) have gained considerable traction within the Software Engineering (SE) community.
This paper initiates an open discussion on potential threats to the validity of LLM-based research.
arXiv Detail & Related papers (2023-12-13T11:02:19Z) - Large Language Models for Code Analysis: Do LLMs Really Do Their Job? [13.48555476110316]
Large language models (LLMs) have demonstrated significant potential in the realm of natural language understanding and programming code processing tasks.
This paper offers a comprehensive evaluation of LLMs' capabilities in performing code analysis tasks.
arXiv Detail & Related papers (2023-10-18T22:02:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.