論文の概要: TetSphere Splatting: Representing High-Quality Geometry with Lagrangian Volumetric Meshes
- arxiv url: http://arxiv.org/abs/2405.20283v2
- Date: Mon, 17 Jun 2024 16:51:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 04:18:36.553632
- Title: TetSphere Splatting: Representing High-Quality Geometry with Lagrangian Volumetric Meshes
- Title(参考訳): TetSphere Splatting:ラグランジアン体積メッシュを用いた高品質形状の表現
- Authors: Minghao Guo, Bohan Wang, Kaiming He, Wojciech Matusik,
- Abstract要約: TetSphere splatting は、高品質な幾何学で3次元形状を再構成するための明示的でラグランジュ的な表現である。
複数の初期四面体球を変形させ、3次元形状を正確に再構築する。
シングルビュー3D再構成、画像/テキスト間コンテンツ生成など、多様なアプリケーションにシームレスに統合される。
- 参考スコア(独自算出の注目度): 47.47768820192874
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We present TetSphere splatting, an explicit, Lagrangian representation for reconstructing 3D shapes with high-quality geometry. In contrast to conventional object reconstruction methods which predominantly use Eulerian representations, including both neural implicit (e.g., NeRF, NeuS) and explicit representations (e.g., DMTet), and often struggle with high computational demands and suboptimal mesh quality, TetSphere splatting utilizes an underused but highly effective geometric primitive -- tetrahedral meshes. This approach directly yields superior mesh quality without relying on neural networks or post-processing. It deforms multiple initial tetrahedral spheres to accurately reconstruct the 3D shape through a combination of differentiable rendering and geometric energy optimization, resulting in significant computational efficiency. Serving as a robust and versatile geometry representation, Tet-Sphere splatting seamlessly integrates into diverse applications, including single-view 3D reconstruction, image-/text-to-3D content generation. Experimental results demonstrate that TetSphere splatting outperforms existing representations, delivering faster optimization speed, enhanced mesh quality, and reliable preservation of thin structures.
- Abstract(参考訳): 高品質な幾何学を用いて3次元形状を再構成するための明示的なラグランジュ表現であるTetSphere splattingを提案する。
ニューラル暗黙的(例えば、NeRF、NeuS)と明示的(例えば、DMTet)の両方を含むユーレリア表現を主に用いた従来のオブジェクト再構成手法とは異なり、高い計算要求と最適メッシュ品質に苦しむ場合が多いが、TetSphere splatting は未使用で非常に効果的な原始的四面体メッシュを利用する。
このアプローチでは、ニューラルネットワークや後処理に頼ることなく、メッシュ品質が直接的に向上する。
複数の初期四面体球を変形させ、微分可能レンダリングと幾何エネルギー最適化を組み合わせて3次元形状を正確に再構成し、計算効率を著しく向上させる。
Tet-Sphereのスプラッティングは、堅牢で汎用的な幾何学表現として機能し、シングルビューの3D再構成、画像とテキストの3Dコンテンツ生成など、多様なアプリケーションにシームレスに統合される。
実験結果から,TetSphereスプラッティングは既存の表現よりも優れており,最適化速度の向上,メッシュ品質の向上,薄型構造物の信頼性維持を実現している。
関連論文リスト
- Geometry Distributions [51.4061133324376]
本稿では,分布として幾何学をモデル化する新しい幾何学的データ表現を提案する。
提案手法では,新しいネットワークアーキテクチャを用いた拡散モデルを用いて表面点分布の学習を行う。
本研究では,多種多様な対象に対して質的かつ定量的に表現を評価し,その有効性を実証した。
論文 参考訳(メタデータ) (2024-11-25T04:06:48Z) - GeoSplatting: Towards Geometry Guided Gaussian Splatting for Physically-based Inverse Rendering [69.67264955234494]
GeoSplattingは、3DGSを明示的な幾何学的ガイダンスと微分可能なPBR方程式で拡張する新しいハイブリッド表現である。
多様なデータセットにわたる総合的な評価は、GeoSplattingの優位性を示している。
論文 参考訳(メタデータ) (2024-10-31T17:57:07Z) - Deep Geometric Moments Promote Shape Consistency in Text-to-3D Generation [27.43973967994717]
MT3Dは高忠実度3Dオブジェクトを利用して視点バイアスを克服するテキスト・ツー・3D生成モデルである。
生成した2次元画像が基本形状と構造を保持することを保証するために,高品質な3次元モデルから導出される深度マップを制御信号として利用する。
3Dアセットから幾何学的詳細を取り入れることで、MT3Dは多様で幾何学的に一貫したオブジェクトを作成することができる。
論文 参考訳(メタデータ) (2024-08-12T06:25:44Z) - CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner [34.78919665494048]
CraftsManは、非常に多様な形状、通常のメッシュトポロジ、詳細な表面を持つ高忠実な3Dジオメトリを生成することができる。
本手法は,従来の方法に比べて高品質な3Dアセットの製作に有効である。
論文 参考訳(メタデータ) (2024-05-23T18:30:12Z) - NeuSDFusion: A Spatial-Aware Generative Model for 3D Shape Completion, Reconstruction, and Generation [52.772319840580074]
3D形状生成は、特定の条件や制約に固執する革新的な3Dコンテンツを作成することを目的としている。
既存の方法は、しばしば3Dの形状を局所化されたコンポーネントの列に分解し、各要素を分離して扱う。
本研究では2次元平面表現を利用した空間認識型3次元形状生成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-27T04:09:34Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
単視点画像から詳細な3Dオブジェクトを再構成するフレームワークであるGeoGS3Dを紹介する。
本稿では,GDS(Gaussian Divergence Significance)という新しい指標を提案する。
実験により、GeoGS3Dはビュー間で高い一貫性を持つ画像を生成し、高品質な3Dオブジェクトを再構成することを示した。
論文 参考訳(メタデータ) (2024-03-15T12:24:36Z) - SurfGen: Adversarial 3D Shape Synthesis with Explicit Surface
Discriminators [5.575197901329888]
本研究では,物体表面に直接対向学習を行う3次元形状合成フレームワーク(SurfGen)を提案する。
提案手法では, 球面上に定義された関数として, 暗黙的な3次元ジェネレータの自明な零等方面を捕捉し, 表現するために, 微分可能な球面射影層を用いる。
大規模形状データセットを用いて本モデルの評価を行い,多種多様なトポロジを持つ高忠実度3次元形状を創出できることを実証した。
論文 参考訳(メタデータ) (2022-01-01T04:44:42Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
1つ以上の視点から見れば、新しいオブジェクトの3次元パラメトリック表面表現を学習する際の課題について検討する。
ビュー間で一貫した高品質なパラメトリックな3次元表面を生成できるニューラルネットワークを設計する。
提案手法は,共通対象カテゴリからの形状の公開データセットに基づいて,教師と訓練を行う。
論文 参考訳(メタデータ) (2020-08-18T06:33:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。