How (not) to Build Quantum PKE in Minicrypt
- URL: http://arxiv.org/abs/2405.20295v1
- Date: Thu, 30 May 2024 17:44:03 GMT
- Title: How (not) to Build Quantum PKE in Minicrypt
- Authors: Longcheng Li, Qian Li, Xingjian Li, Qipeng Liu,
- Abstract summary: We re-examine the possibility of perfect complete QPKE in the quantum random oracle model (QROM)
Our work makes a significant step towards a complete and unconditional quantization of Impagliazzo and Rudich's results.
- Score: 5.885896375772235
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The seminal work by Impagliazzo and Rudich (STOC'89) demonstrated the impossibility of constructing classical public key encryption (PKE) from one-way functions (OWF) in a black-box manner. However, the question remains: can quantum PKE (QPKE) be constructed from quantumly secure OWF? A recent line of work has shown that it is indeed possible to build QPKE from OWF, but with one caveat -- they rely on quantum public keys, which cannot be authenticated and reused. In this work, we re-examine the possibility of perfect complete QPKE in the quantum random oracle model (QROM), where OWF exists. Our first main result: QPKE with classical public keys, secret keys and ciphertext, does not exist in the QROM, if the key generation only makes classical queries. Therefore, a necessary condition for constructing such QPKE from OWF is to have the key generation classically ``un-simulatable''. Previous discussions (Austrin et al. CRYPTO'22) on the impossibility of QPKE from OWF rely on a seemingly strong conjecture. Our work makes a significant step towards a complete and unconditional quantization of Impagliazzo and Rudich's results. Our second main result extends to QPKE with quantum public keys. The second main result: QPKE with quantum public keys, classical secret keys and ciphertext, does not exist in the QROM, if the key generation only makes classical queries and the quantum public key is either pure or ``efficiently clonable''. The result is tight due to all existing QPKEs constructions. Our result further gives evidence on why existing QPKEs lose reusability. To achieve these results, we use a novel argument based on conditional mutual information and quantum Markov chain by Fawzi and Renner (Communications in Mathematical Physics). We believe the techniques used in the work will find other usefulness in separations in quantum cryptography/complexity.
Related papers
- CountCrypt: Quantum Cryptography between QCMA and PP [7.408475650692233]
We construct a quantum oracle relative to which BQP = QCMA but quantum-computation-classical-communication key exchange, QCCC commitments, and two-round quantum key distribution exist.
We also show that QCCC key exchange, QCCC commitments, and two-round quantum key distribution can all be used to build one-way puzzles.
arXiv Detail & Related papers (2024-10-18T18:04:27Z) - Towards the Impossibility of Quantum Public Key Encryption with
Classical Keys from One-Way Functions [0.5999777817331317]
It has been recently shown that public-key encryption (PKE) from one-way functions (OWF) is possible if we consider quantum public keys.
In this paper, we focus on black-box separation for PKE with classical public key and quantum ciphertext from OWF.
arXiv Detail & Related papers (2023-11-06T20:41:25Z) - Public-Key Encryption with Quantum Keys [11.069434965621683]
We study the notion of quantum public-key encryption (qPKE) where keys are allowed to be quantum states.
We show that computational assumptions are necessary to build quantum public-key encryption.
arXiv Detail & Related papers (2023-06-13T11:32:28Z) - Robust Quantum Public-Key Encryption with Applications to Quantum Key
Distribution [16.06159998475861]
Quantum key distribution (QKD) allows Alice and Bob to agree on a shared secret key, while communicating over a public (untrusted) quantum channel.
It has two main advantages: (i) The key is unconditionally hidden to the eyes of any attacker, and (ii) its security assumes only the existence of authenticated classical channels.
We propose a two-message QKD protocol that satisfies everlasting security, assuming only the existence of quantum-secure one-way functions.
arXiv Detail & Related papers (2023-04-06T11:14:55Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - A Simple Construction of Quantum Public-Key Encryption from
Quantum-Secure One-Way Functions [13.677574076242188]
We show that quantum PKE can be constructed from any quantum-secure one-way function.
Our construction is simple, uses only classical ciphertexts, and satisfies the strong notion of CCA security.
arXiv Detail & Related papers (2023-03-02T10:45:16Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Quantum Depth in the Random Oracle Model [57.663890114335736]
We give a comprehensive characterization of the computational power of shallow quantum circuits combined with classical computation.
For some problems, the ability to perform adaptive measurements in a single shallow quantum circuit is more useful than the ability to perform many shallow quantum circuits without adaptive measurements.
arXiv Detail & Related papers (2022-10-12T17:54:02Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.