論文の概要: S3D: A Simple and Cost-Effective Self-Speculative Decoding Scheme for Low-Memory GPUs
- arxiv url: http://arxiv.org/abs/2405.20314v2
- Date: Sat, 1 Jun 2024 15:24:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 13:30:34.713683
- Title: S3D: A Simple and Cost-Effective Self-Speculative Decoding Scheme for Low-Memory GPUs
- Title(参考訳): S3D:低メモリGPUのためのシンプルで費用効果の高い自己投機的デコード方式
- Authors: Wei Zhong, Manasa Bharadwaj,
- Abstract要約: 投機的復号法(SD)は、LLM推論で実現可能な相当な高速化のために、かなりの量の研究の注目を集めている。
本研究では,Skippy Simultaneous Speculative Decoding (S3D)を提案する。
提案手法は,最小限のアーキテクチャ変更とデータトレーニングを必要としながら,最高のパフォーマンス・メモリ比の1つを達成した。
- 参考スコア(独自算出の注目度): 7.816840847892339
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Speculative decoding (SD) has attracted a significant amount of research attention due to the substantial speedup it can achieve for LLM inference. However, despite the high speedups they offer, speculative decoding methods often achieve optimal performance on high-end devices or with a substantial GPU memory overhead. Given limited memory and the necessity of quantization, a high-performing model on a high-end GPU can slow down by up to 7 times. To this end, we propose Skippy Simultaneous Speculative Decoding (or S3D), a cost-effective self-speculative SD method based on simultaneous multi-token decoding and mid-layer skipping. When compared against recent effective open-source SD systems, our method has achieved one of the top performance-memory ratios while requiring minimal architecture changes and training data. Leveraging our memory efficiency, we created a smaller yet more effective SD model based on Phi-3. It is 1.4 to 2 times faster than the quantized EAGLE model and operates in half-precision while using less VRAM.
- Abstract(参考訳): 投機的復号法(SD)は、LLM推論で実現可能な相当な高速化のために、かなりの量の研究の注目を集めている。
しかし、その高速さにもかかわらず、投機的復号法は、ハイエンドデバイスや相当なGPUメモリオーバーヘッドで最適なパフォーマンスを達成することが多い。
メモリの制限と量子化の必要性から、ハイエンドGPUのハイパフォーマンスモデルは最大7倍の速度で低下する可能性がある。
そこで本稿では,Skippy Simultaneous Speculative Decoding (S3D)を提案する。
近年の効率的なオープンソースSDシステムと比較すると,本手法は最小限のアーキテクチャ変更とトレーニングデータを必要としながら,最高のパフォーマンス・メモリ比を達成している。
メモリ効率を活用して、Phi-3をベースとしたより小型で効率的なSDモデルを作成しました。
量子化されたEAGLEモデルよりも1.4倍から2倍高速で、より少ないVRAMを使用しながら半精度で動作する。
関連論文リスト
- Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、そのサイズは計算のボトルネックを生み出している。
そこで本研究では,高性能LLMの高精度かつ疎結合な基本バージョンを作成するための新しいアプローチを提案する。
スパース量子化LLaMAの最大8.6倍のCPU上での総高速化を示す。
論文 参考訳(メタデータ) (2024-05-06T16:03:32Z) - Efficient Video Object Segmentation via Modulated Cross-Attention Memory [123.12273176475863]
頻繁なメモリ拡張を必要とせず、時間的滑らかさをモデル化するトランスフォーマーベースの手法MAVOSを提案する。
我々のMAVOSは、単一のV100 GPU上で37フレーム/秒(FPS)で動作しながら、J&Fスコア63.3%を達成する。
論文 参考訳(メタデータ) (2024-03-26T17:59:58Z) - EAGLES: Efficient Accelerated 3D Gaussians with Lightweight EncodingS [40.94643885302646]
3Dガウシアンスプラッティング(3D-GS)は、ノベルビューシーンの合成で人気がある。
レイディアンス・ニューラル・フィールド(NeRF)に関連する長いトレーニング時間と遅いレンダリング速度の課題に対処する。
本稿では,メモリ単位の記憶容量を大幅に削減するために,量子化埋め込みを利用する手法を提案する。
論文 参考訳(メタデータ) (2023-12-07T18:59:55Z) - AdaLomo: Low-memory Optimization with Adaptive Learning Rate [59.64965955386855]
大規模言語モデルに対する適応学習率(AdaLomo)を用いた低メモリ最適化を提案する。
AdaLomoはAdamWと同等の結果を得ると同時に、メモリ要件を大幅に削減し、大きな言語モデルをトレーニングするためのハードウェア障壁を低くする。
論文 参考訳(メタデータ) (2023-10-16T09:04:28Z) - Flash-LLM: Enabling Cost-Effective and Highly-Efficient Large Generative
Model Inference with Unstructured Sparsity [12.663030430488922]
高速コア上での低コストかつ高効率な大規模生成モデル推論を実現するためのFlash-LLMを提案する。
SpMMカーネルレベルでは、Flash-LLMは最先端のライブラリであるSputnikとSparTAをそれぞれ平均2.9倍、1.5倍で上回っている。
論文 参考訳(メタデータ) (2023-09-19T03:20:02Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - Simple Hardware-Efficient Long Convolutions for Sequence Modeling [18.3719016967593]
状態空間モデル(SSM)は、長いシーケンスモデリングにおいて高い性能を持つ。
単純な代替手段が性能と効率においてSSMと一致するかどうかを考察する。
我々は、長い畳み込みのランタイム性能を改善するためのIO対応アルゴリズムであるFlashButterflyを開発した。
論文 参考訳(メタデータ) (2023-02-13T19:19:23Z) - ETAD: A Unified Framework for Efficient Temporal Action Detection [70.21104995731085]
時間的行動検出(TAD)のようなトリミングされていないビデオ理解は、しばしば計算資源に対する膨大な需要の苦痛に悩まされる。
我々は、効率的なエンド・ツー・エンドの時間的行動検出(ETAD)のための統合されたフレームワークを構築している。
ETADはTHUMOS-14とActivityNet-1.3の両方で最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-05-14T21:16:21Z) - Memformer: A Memory-Augmented Transformer for Sequence Modeling [55.780849185884996]
本稿では、シーケンスモデリングのための効率的なニューラルネットワークであるMemformerを紹介する。
我々のモデルは長いシーケンスを処理する際に線形時間複雑性と一定メモリ空間複雑性を実現する。
論文 参考訳(メタデータ) (2020-10-14T09:03:36Z) - GPU-Accelerated Primal Learning for Extremely Fast Large-Scale
Classification [10.66048003460524]
ロジスティック回帰や線形サポートベクターマシン(SVM)分類などのL2正規化原始問題を解く最も効率的な方法の1つは、広く使われている信頼領域ニュートンアルゴリズムであるTRONである。
我々は、GPU最適化の法則を用いて、異なる損失と特徴表現に対するTRONトレーニング時間を劇的に短縮できることを示した。
論文 参考訳(メタデータ) (2020-08-08T03:40:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。