mRNA secondary structure prediction using utility-scale quantum computers
- URL: http://arxiv.org/abs/2405.20328v1
- Date: Thu, 30 May 2024 17:58:17 GMT
- Title: mRNA secondary structure prediction using utility-scale quantum computers
- Authors: Dimitris Alevras, Mihir Metkar, Takahiro Yamamoto, Vaibhaw Kumar, Triet Friedhoff, Jae-Eun Park, Mitsuharu Takeori, Mariana LaDue, Wade Davis, Alexey Galda,
- Abstract summary: We study the feasibility of solving mRNA secondary structures on a quantum computer with sequence length up to 60 nucleotides.
Our results provide sufficient evidence for the viability of solving mRNA structure prediction problems on a quantum computer.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in quantum computing have opened new avenues for tackling long-standing complex combinatorial optimization problems that are intractable for classical computers. Predicting secondary structure of mRNA is one such notoriously difficult problem that can benefit from the ever-increasing maturity of quantum computing technology. Accurate prediction of mRNA secondary structure is critical in designing RNA-based therapeutics as it dictates various steps of an mRNA life cycle, including transcription, translation, and decay. The current generation of quantum computers have reached utility-scale, allowing us to explore relatively large problem sizes. In this paper, we examine the feasibility of solving mRNA secondary structures on a quantum computer with sequence length up to 60 nucleotides representing problems in the qubit range of 10 to 80. We use Conditional Value at Risk (CVaR)-based VQE algorithm to solve the optimization problems, originating from the mRNA structure prediction problem, on the IBM Eagle and Heron quantum processors. To our encouragement, even with ``minimal'' error mitigation and fixed-depth circuits, our hardware runs yield accurate predictions of minimum free energy (MFE) structures that match the results of the classical solver CPLEX. Our results provide sufficient evidence for the viability of solving mRNA structure prediction problems on a quantum computer and motivate continued research in this direction.
Related papers
- RNACG: A Universal RNA Sequence Conditional Generation model based on Flow-Matching [0.0]
We develop a universal RNA sequence generation model based on flow matching, namely RNACG.
RNACG can accommodate various conditional inputs and is portable, enabling users to customize the encoding network for conditional inputs.
RNACG exhibits extensive applicability in sequence generation and property prediction tasks.
arXiv Detail & Related papers (2024-07-29T09:46:46Z) - A resource-efficient variational quantum algorithm for mRNA codon optimization [0.5120567378386615]
optimizing the mRNA codon has an essential impact on gene expression for a specific target protein.
This research presents a way to encode codons for implementing mRNA codon optimization via the variational quantum eigensolver algorithms on a gate-based quantum computer.
arXiv Detail & Related papers (2024-04-23T09:23:22Z) - Predicting RNA Secondary Structure on Universal Quantum Computer [2.277461161767121]
It is the first step for understanding how RNA structure folds from base sequences that to know how its secondary structure is formed.
Traditional energy-based algorithms are short of precision, particularly for non-nested sequences.
Gate model algorithms for universal quantum computing are not available.
arXiv Detail & Related papers (2023-05-16T15:57:38Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Deciphering RNA Secondary Structure Prediction: A Probabilistic K-Rook Matching Perspective [63.3632827588974]
We introduce RFold, a method that learns to predict the most matching K-Rook solution from the given sequence.
RFold achieves competitive performance and about eight times faster inference efficiency than state-of-the-art approaches.
arXiv Detail & Related papers (2022-12-02T16:34:56Z) - A QUBO model of the RNA folding problem optimized by variational hybrid
quantum annealing [0.0]
We present a model of the RNA folding problem amenable to both quantum annealers and circuit-model quantum computers.
We compare this formulation versus current RNA folding QUBOs after tuning the parameters of all against known RNA structures.
arXiv Detail & Related papers (2022-08-08T19:04:28Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Counteracting dephasing in Molecular Nanomagnets by optimized qudit
encodings [60.1389381016626]
Molecular Nanomagnets may enable the implementation of qudit-based quantum error-correction codes.
A microscopic understanding of the errors corrupting the quantum information encoded in a molecular qudit is essential.
arXiv Detail & Related papers (2021-03-16T19:21:42Z) - Review of Machine-Learning Methods for RNA Secondary Structure
Prediction [21.3539253580504]
We provide a comprehensive overview of RNA secondary structure prediction methods based on machine-learning technologies.
The current pending issues in the field of RNA secondary structure prediction and future trends are also discussed.
arXiv Detail & Related papers (2020-09-01T03:17:15Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z) - RNA Secondary Structure Prediction By Learning Unrolled Algorithms [70.09461537906319]
In this paper, we propose an end-to-end deep learning model, called E2Efold, for RNA secondary structure prediction.
The key idea of E2Efold is to directly predict the RNA base-pairing matrix, and use an unrolled algorithm for constrained programming as the template for deep architectures to enforce constraints.
With comprehensive experiments on benchmark datasets, we demonstrate the superior performance of E2Efold.
arXiv Detail & Related papers (2020-02-13T23:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.