Crypto-ncRNA: Non-coding RNA (ncRNA) Based Encryption Algorithm
- URL: http://arxiv.org/abs/2504.17878v1
- Date: Thu, 24 Apr 2025 18:30:35 GMT
- Title: Crypto-ncRNA: Non-coding RNA (ncRNA) Based Encryption Algorithm
- Authors: Xu Wang, Yiquan Wang, Tin-yeh Huang,
- Abstract summary: crypto-ncRNA is a bio-convergent cryptographic framework that leverages the dynamic folding properties of non-coding RNA.<n> crypto-ncRNA offers a promising and robust approach for securing digital infrastructures against the evolving threats posed by quantum computing.
- Score: 3.334973867478745
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the looming post-quantum era, traditional cryptographic systems are increasingly vulnerable to quantum computing attacks that can compromise their mathematical foundations. To address this critical challenge, we propose crypto-ncRNA-a bio-convergent cryptographic framework that leverages the dynamic folding properties of non-coding RNA (ncRNA) to generate high-entropy, quantum-resistant keys and produce unpredictable ciphertexts. The framework employs a novel, multi-stage process: encoding plaintext into RNA sequences, predicting and manipulating RNA secondary structures using advanced algorithms, and deriving cryptographic keys through the intrinsic physical unclonability of RNA molecules. Experimental evaluations indicate that, although crypto-ncRNA's encryption speed is marginally lower than that of AES, it significantly outperforms RSA in terms of efficiency and scalability while achieving a 100% pass rate on the NIST SP 800-22 randomness tests. These results demonstrate that crypto-ncRNA offers a promising and robust approach for securing digital infrastructures against the evolving threats posed by quantum computing.
Related papers
- Cryptanalysis via Machine Learning Based Information Theoretic Metrics [58.96805474751668]
We propose two novel applications of machine learning (ML) algorithms to perform cryptanalysis on any cryptosystem.<n>These algorithms can be readily applied in an audit setting to evaluate the robustness of a cryptosystem.<n>We show that our classification model correctly identifies the encryption schemes that are not IND-CPA secure, such as DES, RSA, and AES ECB, with high accuracy.
arXiv Detail & Related papers (2025-01-25T04:53:36Z) - RNACG: A Universal RNA Sequence Conditional Generation model based on Flow-Matching [0.0]
We propose RNACG (RNA Generator), a universal framework for RNA sequence design based on flow matching.<n>By unifying sequence generation under a single framework, RNACG enables the integration of multiple RNA design paradigms.
arXiv Detail & Related papers (2024-07-29T09:46:46Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
We introduce the first comprehensive RNA benchmark BEACON (textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models).<n>First, BEACON comprises 13 distinct tasks derived from extensive previous work covering structural analysis, functional studies, and engineering applications.<n>Second, we examine a range of models, including traditional approaches like CNNs, as well as advanced RNA foundation models based on language models, offering valuable insights into the task-specific performances of these models.<n>Third, we investigate the vital RNA language model components
arXiv Detail & Related papers (2024-06-14T19:39:19Z) - mRNA secondary structure prediction using utility-scale quantum computers [0.0]
We study the feasibility of solving mRNA secondary structures on a quantum computer with sequence length up to 60 nucleotides.
Our results provide sufficient evidence for the viability of solving mRNA structure prediction problems on a quantum computer.
arXiv Detail & Related papers (2024-05-30T17:58:17Z) - RiNALMo: General-Purpose RNA Language Models Can Generalize Well on Structure Prediction Tasks [1.1764999317813143]
We introduce RiboNucleic Acid Language Model (RiNALMo) to unveil the hidden code of RNA.
RiNALMo is the largest RNA language model to date, with 650M parameters pre-trained on 36M non-coding RNA sequences.
arXiv Detail & Related papers (2024-02-29T14:50:58Z) - RNA-TransCrypt: Image Encryption Using Chaotic RNA Encoding, Novel Transformative Substitution, and Tailored Cryptographic Operations [2.2351927942921366]
RNA-TransCrypt is a novel image encryption scheme that is highly secure but also efficient and lightweight.
RNA-TransCrypt integrates the biocryptographic properties of RNA encoding with the non-linearity and unpredictability of chaos theory.
arXiv Detail & Related papers (2024-01-09T18:11:12Z) - scHyena: Foundation Model for Full-Length Single-Cell RNA-Seq Analysis
in Brain [46.39828178736219]
We introduce scHyena, a foundation model designed to address these challenges and enhance the accuracy of scRNA-seq analysis in the brain.
scHyena is equipped with a linear adaptor layer, the positional encoding via gene-embedding, and a bidirectional Hyena operator.
This enables us to process full-length scRNA-seq data without losing any information from the raw data.
arXiv Detail & Related papers (2023-10-04T10:30:08Z) - Knowledge from Large-Scale Protein Contact Prediction Models Can Be
Transferred to the Data-Scarce RNA Contact Prediction Task [40.051834115537474]
We find that a protein-coevolution Transformer-based deep neural network can be transferred to the RNA contact prediction task.
Experiments confirm that RNA contact prediction through transfer learning is greatly improved.
Our findings indicate that the learned structural patterns of proteins can be transferred to RNAs, opening up potential new avenues for research.
arXiv Detail & Related papers (2023-02-13T06:00:56Z) - Accurate RNA 3D structure prediction using a language model-based deep learning approach [50.193512039121984]
RhoFold+ is an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences.<n>RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction.
arXiv Detail & Related papers (2022-07-04T17:15:35Z) - A Variational Quantum Attack for AES-like Symmetric Cryptography [69.80357450216633]
We propose a variational quantum attack algorithm (VQAA) for classical AES-like symmetric cryptography.
In the VQAA, the known ciphertext is encoded as the ground state of a Hamiltonian that is constructed through a regular graph.
arXiv Detail & Related papers (2022-05-07T03:15:15Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
We propose a new benchmark of applying reinforcement learning to RNA sequence design, in which the objective function is defined to be the free energy in the sequence's secondary structure.
We show results of the ablation analysis that we do for these algorithms, as well as graphs indicating the algorithm's performance across batches.
arXiv Detail & Related papers (2021-11-05T02:54:06Z) - Classification of Long Noncoding RNA Elements Using Deep Convolutional
Neural Networks and Siamese Networks [17.8181080354116]
This thesis proposes a new methodemploying deep convolutional neural networks (CNNs) to classifyncRNA sequences.
As a result, clas-sifying RNA sequences is converted to an image classificationproblem that can be efficiently solved by CNN-basedclassification models.
arXiv Detail & Related papers (2021-02-10T17:26:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.