論文の概要: Visual Perception by Large Language Model's Weights
- arxiv url: http://arxiv.org/abs/2405.20339v1
- Date: Thu, 30 May 2024 17:59:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 12:50:16.746802
- Title: Visual Perception by Large Language Model's Weights
- Title(参考訳): 大規模言語モデルの重みによる視覚知覚
- Authors: Feipeng Ma, Hongwei Xue, Guangting Wang, Yizhou Zhou, Fengyun Rao, Shilin Yan, Yueyi Zhang, Siying Wu, Mike Zheng Shou, Xiaoyan Sun,
- Abstract要約: 本稿では,視覚情報をモデル重みとして表現するパラメータ空間アライメントパラダイムを提案する。
各入力画像に対して、視覚的特徴を抽出し、特徴を知覚重みに変換し、知覚重みとLLMの重みをマージする視覚エンコーダを用いる。
このようにして、LLMの入力は視覚トークンを必要としないため、入力シーケンスの長さが小さくなり、効率が大幅に向上する。
- 参考スコア(独自算出の注目度): 34.34876575183736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing Multimodal Large Language Models (MLLMs) follow the paradigm that perceives visual information by aligning visual features with the input space of Large Language Models (LLMs), and concatenating visual tokens with text tokens to form a unified sequence input for LLMs. These methods demonstrate promising results on various vision-language tasks but are limited by the high computational effort due to the extended input sequence resulting from the involvement of visual tokens. In this paper, instead of input space alignment, we propose a novel parameter space alignment paradigm that represents visual information as model weights. For each input image, we use a vision encoder to extract visual features, convert features into perceptual weights, and merge the perceptual weights with LLM's weights. In this way, the input of LLM does not require visual tokens, which reduces the length of the input sequence and greatly improves efficiency. Following this paradigm, we propose VLoRA with the perceptual weights generator. The perceptual weights generator is designed to convert visual features to perceptual weights with low-rank property, exhibiting a form similar to LoRA. The experimental results show that our VLoRA achieves comparable performance on various benchmarks for MLLMs, while significantly reducing the computational costs for both training and inference. The code and models will be made open-source.
- Abstract(参考訳): 既存のMLLM(Multimodal Large Language Models)は、視覚的特徴とLLM(Large Language Models)の入力空間を整列することで視覚情報を知覚するパラダイムに従っており、視覚トークンとテキストトークンを結合してLLMの統一シーケンス入力を形成する。
これらの手法は、様々な視覚言語タスクにおいて有望な結果を示すが、視覚トークンの関与による入力シーケンスの拡張により、高い計算労力によって制限される。
本稿では、入力空間アライメントの代わりに、視覚情報をモデル重みとして表現する新しいパラメータ空間アライメントパラダイムを提案する。
各入力画像に対して、視覚的特徴を抽出し、特徴を知覚重みに変換し、知覚重みとLLMの重みをマージする視覚エンコーダを用いる。
このようにして、LLMの入力は視覚トークンを必要としないため、入力シーケンスの長さが小さくなり、効率が大幅に向上する。
このパラダイムに従って,知覚重み生成器を用いたVLoRAを提案する。
知覚重み生成器は、視覚的特徴を低ランク特性の知覚重みに変換するように設計されており、LoRAに似た形状を示す。
実験の結果,VLoRAはMLLMの様々なベンチマークで同等の性能を示し,トレーニングと推論の両方の計算コストを大幅に削減した。
コードとモデルはオープンソースになる予定だ。
関連論文リスト
- Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - TokenPacker: Efficient Visual Projector for Multimodal LLM [20.915458668081353]
ビジュアルプロジェクタは、ビジュアルエンコーダとLarge Language Model(LLM)の間に必須のブリッジとして機能する。
本稿では,密集した特徴を注入して凝縮した視覚トークンを生成するために,粗く細かなスキームを取り入れた新しいビジュアルプロジェクタを提案する。
我々のアプローチでは、ビジュアルトークンを75%89%圧縮し、多様なベンチマークで同等またはさらに優れたパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-07-02T16:10:55Z) - DocKylin: A Large Multimodal Model for Visual Document Understanding with Efficient Visual Slimming [33.40963475653868]
DocKylinは文書中心のMLLMで、ピクセルレベルとトークンレベルの両方でビジュアルコンテンツをスリム化する。
実験では、さまざまなビジュアル文書理解(VDU)ベンチマークでDocKylinの有望な性能を実証した。
論文 参考訳(メタデータ) (2024-06-27T11:28:36Z) - Towards Semantic Equivalence of Tokenization in Multimodal LLM [149.11720372278273]
視覚トークン化は、視覚と言語間のセマンティックアライメントに不可欠である。
本稿では,新しい動的セマンティック等価ビジョントケナイザ(SeTok)を提案する。
SeTokは動的クラスタリングアルゴリズムを通じて、視覚的特徴をセマンティックユニットにグループ化する。
結果として得られる視覚トークンは意味的整合性を効果的に保持し、低周波と高周波の両方の視覚特徴をキャプチャする。
論文 参考訳(メタデータ) (2024-06-07T17:55:43Z) - Dense Connector for MLLMs [89.50595155217108]
Dense Connector - 既存のMLLMを大幅に強化するプラグイン・アンド・プレイ型ヴィジュアル言語コネクタ。
画像のみを訓練したわれわれのモデルは、ビデオ理解でも際立ったゼロショットの能力を誇示している。
論文 参考訳(メタデータ) (2024-05-22T16:25:03Z) - Memory-Space Visual Prompting for Efficient Vision-Language Fine-Tuning [59.13366859237086]
大規模視覚言語(VL)モデルを効率的に構築するための現在のソリューションは、2段階のパラダイムに従う。
視覚情報に関連するタスクに対処する際の言語モデルを容易にする追加知識として視覚的プロンプトを考察する。
本稿では,視覚的知識注入のためのFFNの重み付けにより視覚的プロンプトを記憶する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-09T08:23:20Z) - Self-Training Large Language Models for Improved Visual Program Synthesis With Visual Reinforcement [93.73648674743097]
ビジュアルプログラム合成は、構成型コンピュータビジョンタスクのための大規模言語モデルの推論能力を利用するための有望なアプローチである。
それまでの作業では、視覚プログラムを合成するために、凍結LDMを使用した数発のプロンプトを使用していた。
トレーニング用ビジュアルプログラムのデータセットは存在せず、ビジュアルプログラムデータセットの取得は簡単にクラウドソーシングできない。
論文 参考訳(メタデータ) (2024-04-06T13:25:00Z) - LLaVA-PruMerge: Adaptive Token Reduction for Efficient Large Multimodal Models [35.88374542519597]
大規模マルチモーダルモデル(LMM)は、視覚エンコーダと大きな言語モデルとを接続することで、視覚的推論能力を示す。
近年のLMMには、高解像度の画像やビデオなど、より複雑な視覚入力が組み込まれており、視覚トークンの数が大幅に増加する。
我々は,LMMの性能を損なうことなく,視覚トークンの数を著しく削減する適応型視覚トークン削減戦略であるPruMergeを提案する。
論文 参考訳(メタデータ) (2024-03-22T17:59:52Z) - HyperLLaVA: Dynamic Visual and Language Expert Tuning for Multimodal Large Language Models [70.25499865569353]
本稿では,プロジェクタとLLMパラメータの適応的チューニングを含むHyperLLaVAと,動的ビジュアルエキスパートと言語エキスパートを紹介する。
MME,MMBench,SEED-Bench,LLaVA-Benchなど,既存のMLLMベンチマークではLLaVAを大きく上回っている。
論文 参考訳(メタデータ) (2024-03-20T09:42:43Z) - Aligned with LLM: a new multi-modal training paradigm for encoding fMRI
activity in visual cortex [4.57590454144072]
近年,事前訓練された大規模言語モデル(LLM)の人気が高まっている。
本稿では,視覚野のfMRI活性を符号化し,LLMと整合した新しいマルチモーダルトレーニングパラダイムを提案する。
論文 参考訳(メタデータ) (2024-01-08T12:30:23Z) - InfMLLM: A Unified Framework for Visual-Language Tasks [44.29407348046122]
マルチモーダルな大言語モデル (MLLM) が注目されている。
この作業は、LLMがより視覚的な言語に関連したタスクに取り組むことを可能にすることを目的としている。
InfMLLMは、最先端(SOTA)パフォーマンスまたは最近のMLLMに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-12T09:58:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。