Personalized Adapter for Large Meteorology Model on Devices: Towards Weather Foundation Models
- URL: http://arxiv.org/abs/2405.20348v1
- Date: Fri, 24 May 2024 15:25:09 GMT
- Title: Personalized Adapter for Large Meteorology Model on Devices: Towards Weather Foundation Models
- Authors: Shengchao Chen, Guodong Long, Jing Jiang, Chengqi Zhang,
- Abstract summary: LM-Weather is a generic approach to taming pre-trained language models (PLMs)
We introduce a lightweight personalized adapter into PLMs and endow it with weather pattern awareness.
Experiments show LM-Weather outperforms the state-of-the-art results by a large margin across various tasks.
- Score: 36.229082478423585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper demonstrates that pre-trained language models (PLMs) are strong foundation models for on-device meteorological variables modeling. We present LM-Weather, a generic approach to taming PLMs, that have learned massive sequential knowledge from the universe of natural language databases, to acquire an immediate capability to obtain highly customized models for heterogeneous meteorological data on devices while keeping high efficiency. Concretely, we introduce a lightweight personalized adapter into PLMs and endows it with weather pattern awareness. During communication between clients and the server, low-rank-based transmission is performed to effectively fuse the global knowledge among devices while maintaining high communication efficiency and ensuring privacy. Experiments on real-wold dataset show that LM-Weather outperforms the state-of-the-art results by a large margin across various tasks (e.g., forecasting and imputation at different scales). We provide extensive and in-depth analyses experiments, which verify that LM-Weather can (1) indeed leverage sequential knowledge from natural language to accurately handle meteorological sequence, (2) allows each devices obtain highly customized models under significant heterogeneity, and (3) generalize under data-limited and out-of-distribution (OOD) scenarios.
Related papers
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - LightWeather: Harnessing Absolute Positional Encoding to Efficient and Scalable Global Weather Forecasting [21.048535830456363]
We show that absolute positional encoding is what really works in Transformer-based weather forecasting models.
We propose LightWeather, a lightweight and effective model for station-of-based global weather forecasting.
arXiv Detail & Related papers (2024-08-19T04:23:40Z) - A Scalable Real-Time Data Assimilation Framework for Predicting Turbulent Atmosphere Dynamics [8.012940782999975]
We introduce a generic real-time data assimilation framework and demonstrate its end-to-end performance on the Frontier supercomputer.
This framework comprises two primary modules: an ensemble score filter (EnSF) and a vision transformer-based surrogate.
We demonstrate both the strong and weak scaling of our framework up to 1024 GPUs on the Exascale supercomputer, Frontier.
arXiv Detail & Related papers (2024-07-16T20:44:09Z) - Probabilistic Emulation of a Global Climate Model with Spherical DYffusion [15.460280166612119]
We present the first conditional generative model that produces accurate and physically consistent global climate ensemble simulations.
Our model integrates the dynamics-informed diffusion framework (DYffusion) with the Spherical Fourier Neural Operator (SFNO) architecture.
The model achieves near gold-standard performance for climate model emulation, outperforming existing approaches and demonstrating promising ensemble skill.
arXiv Detail & Related papers (2024-06-21T00:16:55Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - Federated Prompt Learning for Weather Foundation Models on Devices [37.88417074427373]
On-device intelligence for weather forecasting uses local deep learning models to analyze weather patterns without centralized cloud computing.
This paper propose Federated Prompt Learning for Weather Foundation Models on Devices (FedPoD)
FedPoD enables devices to obtain highly customized models while maintaining communication efficiency.
arXiv Detail & Related papers (2023-05-23T16:59:20Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.