論文の概要: Efficient Systematic Reviews: Literature Filtering with Transformers & Transfer Learning
- arxiv url: http://arxiv.org/abs/2405.20354v2
- Date: Thu, 10 Oct 2024 23:20:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-14 13:30:15.932436
- Title: Efficient Systematic Reviews: Literature Filtering with Transformers & Transfer Learning
- Title(参考訳): 効率的な体系的レビュー:トランスフォーマーとトランスファーラーニングによる文献フィルタリング
- Authors: John Hawkins, David Tivey,
- Abstract要約: 特定のトピックに関する重要な研究項目を特定するのに必要な時間に関して、負担が増大する。
本研究では,必要な内容の自然言語記述として提案される研究課題に適合する汎用フィルタリングシステムを構築する方法を提案する。
以上の結果から, バイオメディカル文献に基づいて事前学習したトランスフォーマーモデルを用いて, 特定のタスクを微調整したトランスフォーマーモデルにより, この問題に対する有望な解決策が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Identifying critical research within the growing body of academic work is an intrinsic aspect of conducting quality research. Systematic review processes used in evidence-based medicine formalise this as a procedure that must be followed in a research program. However, it comes with an increasing burden in terms of the time required to identify the important articles of research for a given topic. In this work, we develop a method for building a general-purpose filtering system that matches a research question, posed as a natural language description of the required content, against a candidate set of articles obtained via the application of broad search terms. Our results demonstrate that transformer models, pre-trained on biomedical literature, and then fine tuned for the specific task, offer a promising solution to this problem. The model can remove large volumes of irrelevant articles for most research questions. Furthermore, analysis of the specific research questions in our training data suggest natural avenues for further improvement.
- Abstract(参考訳): 学術研究の育成分野における批判的研究の特定は、質研究の実施の本質的な側面である。
証拠に基づく医学で使用される体系的なレビュープロセスは、これを研究プログラムで従わなければならない手順として定式化する。
しかし、特定のトピックに関する重要な研究項目を特定するのに必要な時間に関して、負担が増大している。
本研究では,研究課題に適合する汎用フィルタリングシステムの構築手法を開発し,必要な内容を自然言語で記述する手法を提案する。
以上の結果から, バイオメディカル文献に基づいて事前学習したトランスフォーマーモデルを用いて, 特定のタスクを微調整したトランスフォーマーモデルにより, この問題に対する有望な解決策が得られた。
このモデルは、ほとんどの研究課題に対して、大量の無関係な記事を削除することができる。
さらに、トレーニングデータにおける特定の研究課題の分析により、さらなる改善に向けた自然な道のりが示唆された。
関連論文リスト
- Automating Bibliometric Analysis with Sentence Transformers and Retrieval-Augmented Generation (RAG): A Pilot Study in Semantic and Contextual Search for Customized Literature Characterization for High-Impact Urban Research [2.1728621449144763]
文献分析は、都市科学における研究動向、スコープ、影響を理解するために不可欠である。
キーワード検索に依存する伝統的な手法は、記事のタイトルやキーワードに明記されていない価値ある洞察を明らかにするのに失敗することが多い。
我々は、生成AIモデル、特にトランスフォーマーとレトリーバル拡張生成(RAG)を活用して、バイオロメトリ分析の自動化と強化を行う。
論文 参考訳(メタデータ) (2024-10-08T05:13:27Z) - LLAssist: Simple Tools for Automating Literature Review Using Large Language Models [0.0]
LLAssistは学術研究における文献レビューの合理化を目的としたオープンソースツールである。
レビュープロセスの重要な側面を自動化するために、Large Language Models(LLM)とNatural Language Processing(NLP)技術を使用する。
論文 参考訳(メタデータ) (2024-07-19T02:48:54Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、大規模言語モデルによる研究アイデア作成エージェントである。
科学文献に基づいて繰り返し精製しながら、問題、方法、実験設計を生成する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
本稿では,研究者にパーソナライズされた効率的な調査支援を目的とした会話システムであるSurveyAgentを紹介する。
SurveyAgentは3つの重要なモジュールを統合している。文書を整理するための知識管理、関連する文献を発見するための勧告、より深いレベルでコンテンツを扱うためのクエリ回答だ。
本評価は,研究活動の合理化におけるSurveyAgentの有効性を実証し,研究者の科学文献との交流を促進する能力を示すものである。
論文 参考訳(メタデータ) (2024-04-09T15:01:51Z) - System for systematic literature review using multiple AI agents:
Concept and an empirical evaluation [5.194208843843004]
本稿では,システム文献レビューの実施プロセスの完全自動化を目的とした,新しいマルチAIエージェントモデルを提案する。
このモデルは、研究者がトピックを入力するユーザフレンドリーなインターフェースを介して動作する。
関連する学術論文を検索するために使用される検索文字列を生成する。
モデルはこれらの論文の要約を自律的に要約する。
論文 参考訳(メタデータ) (2024-03-13T10:27:52Z) - An Evaluation of Large Language Models in Bioinformatics Research [52.100233156012756]
本研究では,大規模言語モデル(LLM)の性能について,バイオインフォマティクスの幅広い課題について検討する。
これらのタスクには、潜在的なコーディング領域の同定、遺伝子とタンパク質の命名されたエンティティの抽出、抗微生物および抗がんペプチドの検出、分子最適化、教育生物情報学問題の解決が含まれる。
以上の結果から, GPT 変種のような LLM がこれらのタスクの多くをうまく処理できることが示唆された。
論文 参考訳(メタデータ) (2024-02-21T11:27:31Z) - De-identification of clinical free text using natural language
processing: A systematic review of current approaches [48.343430343213896]
自然言語処理は、その非識別プロセスの自動化の可能性を繰り返し示してきた。
本研究の目的は,過去13年間に臨床自由テキストの非識別化が進展したことを示す体系的な証拠を提供することである。
論文 参考訳(メタデータ) (2023-11-28T13:20:41Z) - Application of Transformers based methods in Electronic Medical Records:
A Systematic Literature Review [77.34726150561087]
本研究は,異なるNLPタスクにおける電子カルテ(EMR)のトランスフォーマーに基づく手法を用いて,最先端技術に関する体系的な文献レビューを行う。
論文 参考訳(メタデータ) (2023-04-05T22:19:42Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z) - Best Practices and Scoring System on Reviewing A.I. based Medical
Imaging Papers: Part 1 Classification [0.9428556282541211]
SIIMの機械学習教育サブミッションは、これらの研究をレビューするためのガイドラインを確立するための知識ギャップと深刻な必要性を特定している。
このシリーズの最初のエントリは、画像分類のタスクに焦点を当てている。
このシリーズの目的は、A.I.をベースとした医療画像のレビュープロセスを改善するためのリソースを提供することである。
論文 参考訳(メタデータ) (2022-02-03T21:46:59Z) - The CSO Classifier: Ontology-Driven Detection of Research Topics in
Scholarly Articles [0.0]
コンピュータサイエンスオントロジー(CSO)に基づく研究論文の自動分類のための新しい教師なしアプローチを紹介します。
CSOは、研究論文(タイトル、抽象、キーワード)に関連するメタデータを入力として取り、オントロジーから引き出された研究概念の選択を返します。
このアプローチは、手作業による注釈付き記事のゴールドスタンダードで評価され、代替方法よりも大幅に改善されました。
論文 参考訳(メタデータ) (2021-04-02T09:02:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。