Quantum encoder for fixed Hamming-weight subspaces
- URL: http://arxiv.org/abs/2405.20408v2
- Date: Thu, 5 Sep 2024 11:50:39 GMT
- Title: Quantum encoder for fixed Hamming-weight subspaces
- Authors: Renato M. S. Farias, Thiago O. Maciel, Giancarlo Camilo, Ruge Lin, Sergi Ramos-Calderer, Leandro Aolita,
- Abstract summary: We present an exact $n$-qubit computational-basis amplitude encoder of real- or complex-principle data vectors of $d=binomnk$ provided in analytical form.
We also perform an experimental proof-of-principle demonstration of our scheme on a commercial trapped-ion quantum computer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an exact $n$-qubit computational-basis amplitude encoder of real- or complex-valued data vectors of $d=\binom{n}{k}$ components into a subspace of fixed Hamming weight $k$. This represents a polynomial space compression. The circuit is optimal in that it expresses an arbitrary data vector using only $d-1$ (controlled) Reconfigurable Beam Splitter (RBS) gates and is constructed by an efficient classical algorithm that sequentially generates all bitstrings of weight $k$ and identifies all gate parameters. An explicit compilation into CNOTs and single-qubit gates is presented, with the total CNOT-gate count of $\mathcal{O}(k\, d)$ provided in analytical form. In addition, we show how to load data in the binary basis by sequentially stacking encoders of different Hamming weights using $\mathcal{O}(d\,\log(d))$ CNOT gates. Moreover, using generalized RBS gates that mix states of different Hamming weights, we extend the construction to efficiently encode arbitrary sparse vectors. Finally, we perform an experimental proof-of-principle demonstration of our scheme on a commercial trapped-ion quantum computer. We successfully upload a $q$-Gaussian probability distribution in the non-log-concave regime with $n = 6$ and $k = 2$. We also showcase how the effect of hardware noise can be alleviated by quantum error mitigation. Our results constitute a versatile framework for quantum data compression with various potential applications in fields such as quantum chemistry, quantum machine learning, and constrained combinatorial optimizations.
Related papers
- Linear Circuit Synthesis using Weighted Steiner Trees [45.11082946405984]
CNOT circuits are a common building block of general quantum circuits.
This article presents state-of-the-art algorithms for optimizing the number of CNOT gates.
A simulated evaluation shows that the suggested is almost always beneficial and reduces the number of CNOT gates by up to 10%.
arXiv Detail & Related papers (2024-08-07T19:51:22Z) - Logarithmic-Depth Quantum Circuits for Hamming Weight Projections [3.481985817302898]
We propose several quantum algorithms that realize a coherent Hamming weight projective measurement on an input pure state.
We analyze a depth-width trade-off for the corresponding quantum circuits, allowing for a depth reduction of the circuits at the cost of more control qubits.
arXiv Detail & Related papers (2024-04-10T16:35:36Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - On sampling determinantal and Pfaffian point processes on a quantum
computer [49.1574468325115]
DPPs were introduced by Macchi as a model in quantum optics the 1970s.
Most applications require sampling from a DPP, and given their quantum origin, it is natural to wonder whether sampling a DPP on a classical computer is easier than on a classical one.
Vanilla sampling consists in two steps, of respective costs $mathcalO(N3)$ and $mathcalO(Nr2)$ operations on a classical computer, where $r$ is the rank of the kernel matrix.
arXiv Detail & Related papers (2023-05-25T08:43:11Z) - Qubit-Efficient Randomized Quantum Algorithms for Linear Algebra [3.4137115855910767]
We propose a class of randomized quantum algorithms for the task of sampling from matrix functions.
Our use of qubits is purely algorithmic, and no additional qubits are required for quantum data structures.
arXiv Detail & Related papers (2023-02-03T17:22:49Z) - Efficient Quantum Simulation of Electron-Phonon Systems by Variational
Basis State Encoder [12.497706003633391]
Digital quantum simulation of electron-phonon systems requires truncating infinite phonon levels into $N$ basis states.
We propose a variational basis state encoding algorithm that reduces the scaling of the number of qubits and quantum gates.
arXiv Detail & Related papers (2023-01-04T04:23:53Z) - Digital-analog co-design of the Harrow-Hassidim-Lloyd algorithm [0.0]
Harrow-Hassidim-Lloyd quantum algorithm was proposed to solve linear systems of equations $Avecx = vecb$.
There is not an explicit quantum circuit for the subroutine which maps the inverse of the problem matrix $A$ into an ancillary qubit.
We present a co-designed quantum processor which reduces the depth of the algorithm.
arXiv Detail & Related papers (2022-07-27T13:58:13Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation.
We prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude noise.
arXiv Detail & Related papers (2022-01-31T22:19:49Z) - Quantum Garbled Circuits [9.937090317971313]
We show how to compute an encoding of a given quantum circuit and quantum input, from which it is possible to derive the output of the computation and nothing else.
Our protocol has the so-called $Sigma$ format with a single-bit challenge, and allows the inputs to be delayed to the last round.
arXiv Detail & Related papers (2020-06-01T17:07:01Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.