Is My Data in Your Retrieval Database? Membership Inference Attacks Against Retrieval Augmented Generation
- URL: http://arxiv.org/abs/2405.20446v2
- Date: Fri, 7 Jun 2024 09:39:39 GMT
- Title: Is My Data in Your Retrieval Database? Membership Inference Attacks Against Retrieval Augmented Generation
- Authors: Maya Anderson, Guy Amit, Abigail Goldsteen,
- Abstract summary: We introduce an efficient and easy-to-use method for conducting a Membership Inference Attack (MIA) against RAG systems.
We demonstrate the effectiveness of our attack using two benchmark datasets and multiple generative models.
Our findings highlight the importance of implementing security countermeasures in deployed RAG systems.
- Score: 0.9217021281095907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval Augmented Generation (RAG) systems have shown great promise in natural language processing. However, their reliance on data stored in a retrieval database, which may contain proprietary or sensitive information, introduces new privacy concerns. Specifically, an attacker may be able to infer whether a certain text passage appears in the retrieval database by observing the outputs of the RAG system, an attack known as a Membership Inference Attack (MIA). Despite the significance of this threat, MIAs against RAG systems have yet remained under-explored. This study addresses this gap by introducing an efficient and easy-to-use method for conducting MIA against RAG systems. We demonstrate the effectiveness of our attack using two benchmark datasets and multiple generative models, showing that the membership of a document in the retrieval database can be efficiently determined through the creation of an appropriate prompt in both black-box and gray-box settings. Moreover, we introduce an initial defense strategy based on adding instructions to the RAG template, which shows high effectiveness for some datasets and models. Our findings highlight the importance of implementing security countermeasures in deployed RAG systems and developing more advanced defenses to protect the privacy and security of retrieval databases.
Related papers
- HijackRAG: Hijacking Attacks against Retrieval-Augmented Large Language Models [18.301965456681764]
We reveal a novel vulnerability, the retrieval prompt hijack attack (HijackRAG)
HijackRAG enables attackers to manipulate the retrieval mechanisms of RAG systems by injecting malicious texts into the knowledge database.
We propose both black-box and white-box attack strategies tailored to different levels of the attacker's knowledge.
arXiv Detail & Related papers (2024-10-30T09:15:51Z) - Mask-based Membership Inference Attacks for Retrieval-Augmented Generation [25.516648802281626]
Retrieval-Augmented Generation (RAG) has been an effective approach to mitigate hallucinations in large language models (LLMs)
Recently, there has been a trend storing up-to-date or copyrighted data in RAG knowledge databases instead of using it for LLM training.
This practice has raised concerns about Membership Inference Attacks (MIAs), which aim to detect if a specific target document is stored in the RAG system's knowledge database.
arXiv Detail & Related papers (2024-10-26T10:43:39Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - Rag and Roll: An End-to-End Evaluation of Indirect Prompt Manipulations in LLM-based Application Frameworks [12.061098193438022]
Retrieval Augmented Generation (RAG) is a technique commonly used to equip models with out of distribution knowledge.
This paper investigates the security of RAG systems against end-to-end indirect prompt manipulations.
arXiv Detail & Related papers (2024-08-09T12:26:05Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
Text anonymization is crucial for sharing sensitive data while maintaining privacy.
Existing techniques face the emerging challenges of re-identification attack ability of Large Language Models.
This paper proposes a framework composed of three LLM-based components -- a privacy evaluator, a utility evaluator, and an optimization component.
arXiv Detail & Related papers (2024-07-16T14:28:56Z) - Generating Is Believing: Membership Inference Attacks against Retrieval-Augmented Generation [9.73190366574692]
Retrieval-Augmented Generation (RAG) is a technique that mitigates issues such as hallucinations and knowledge staleness in Large Language Models (LLMs)
Existing research has demonstrated potential privacy risks associated with the LLMs of RAG.
We present S$2$MIA, a underlineMembership underlineInference underlineAttack that utilizes the underlineSemantic underlineSimilarity between a given sample and the content generated by the RAG system.
arXiv Detail & Related papers (2024-06-27T14:58:38Z) - "Glue pizza and eat rocks" -- Exploiting Vulnerabilities in Retrieval-Augmented Generative Models [74.05368440735468]
Retrieval-Augmented Generative (RAG) models enhance Large Language Models (LLMs)
In this paper, we demonstrate a security threat where adversaries can exploit the openness of these knowledge bases.
arXiv Detail & Related papers (2024-06-26T05:36:23Z) - Certifiably Robust RAG against Retrieval Corruption [58.677292678310934]
Retrieval-augmented generation (RAG) has been shown vulnerable to retrieval corruption attacks.
In this paper, we propose RobustRAG as the first defense framework against retrieval corruption attacks.
arXiv Detail & Related papers (2024-05-24T13:44:25Z) - The Good and The Bad: Exploring Privacy Issues in Retrieval-Augmented
Generation (RAG) [56.67603627046346]
Retrieval-augmented generation (RAG) is a powerful technique to facilitate language model with proprietary and private data.
In this work, we conduct empirical studies with novel attack methods, which demonstrate the vulnerability of RAG systems on leaking the private retrieval database.
arXiv Detail & Related papers (2024-02-23T18:35:15Z) - Model Stealing Attack against Recommender System [85.1927483219819]
Some adversarial attacks have achieved model stealing attacks against recommender systems.
In this paper, we constrain the volume of available target data and queries and utilize auxiliary data, which shares the item set with the target data, to promote model stealing attacks.
arXiv Detail & Related papers (2023-12-18T05:28:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.