Mask-based Membership Inference Attacks for Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2410.20142v1
- Date: Sat, 26 Oct 2024 10:43:39 GMT
- Title: Mask-based Membership Inference Attacks for Retrieval-Augmented Generation
- Authors: Mingrui Liu, Sixiao Zhang, Cheng Long,
- Abstract summary: Retrieval-Augmented Generation (RAG) has been an effective approach to mitigate hallucinations in large language models (LLMs)
Recently, there has been a trend storing up-to-date or copyrighted data in RAG knowledge databases instead of using it for LLM training.
This practice has raised concerns about Membership Inference Attacks (MIAs), which aim to detect if a specific target document is stored in the RAG system's knowledge database.
- Score: 25.516648802281626
- License:
- Abstract: Retrieval-Augmented Generation (RAG) has been an effective approach to mitigate hallucinations in large language models (LLMs) by incorporating up-to-date and domain-specific knowledge. Recently, there has been a trend of storing up-to-date or copyrighted data in RAG knowledge databases instead of using it for LLM training. This practice has raised concerns about Membership Inference Attacks (MIAs), which aim to detect if a specific target document is stored in the RAG system's knowledge database so as to protect the rights of data producers. While research has focused on enhancing the trustworthiness of RAG systems, existing MIAs for RAG systems remain largely insufficient. Previous work either relies solely on the RAG system's judgment or is easily influenced by other documents or the LLM's internal knowledge, which is unreliable and lacks explainability. To address these limitations, we propose a Mask-Based Membership Inference Attacks (MBA) framework. Our framework first employs a masking algorithm that effectively masks a certain number of words in the target document. The masked text is then used to prompt the RAG system, and the RAG system is required to predict the mask values. If the target document appears in the knowledge database, the masked text will retrieve the complete target document as context, allowing for accurate mask prediction. Finally, we adopt a simple yet effective threshold-based method to infer the membership of target document by analyzing the accuracy of mask prediction. Our mask-based approach is more document-specific, making the RAG system's generation less susceptible to distractions from other documents or the LLM's internal knowledge. Extensive experiments demonstrate the effectiveness of our approach compared to existing baseline models.
Related papers
- ChunkRAG: Novel LLM-Chunk Filtering Method for RAG Systems [2.8692611791027893]
Retrieval-Augmented Generation (RAG) systems generate inaccurate responses due to the retrieval of irrelevant or loosely related information.
We propose ChunkRAG, a framework that enhances RAG systems by evaluating and filtering retrieved information at the chunk level.
arXiv Detail & Related papers (2024-10-25T14:07:53Z) - VisRAG: Vision-based Retrieval-augmented Generation on Multi-modality Documents [66.42579289213941]
Retrieval-augmented generation (RAG) is an effective technique that enables large language models to utilize external knowledge sources for generation.
In this paper, we introduce VisRAG, which tackles this issue by establishing a vision-language model (VLM)-based RAG pipeline.
In this pipeline, instead of first parsing the document to obtain text, the document is directly embedded using a VLM as an image and then retrieved to enhance the generation of a VLM.
arXiv Detail & Related papers (2024-10-14T15:04:18Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - Bridge the Points: Graph-based Few-shot Segment Anything Semantically [79.1519244940518]
Recent advancements in pre-training techniques have enhanced the capabilities of vision foundation models.
Recent studies extend the SAM to Few-shot Semantic segmentation (FSS)
We propose a simple yet effective approach based on graph analysis.
arXiv Detail & Related papers (2024-10-09T15:02:28Z) - On the Vulnerability of Applying Retrieval-Augmented Generation within
Knowledge-Intensive Application Domains [34.122040172188406]
Retrieval-Augmented Generation (RAG) has been empirically shown to enhance the performance of large language models (LLMs) in knowledge-intensive domains.
We show that RAG is vulnerable to universal poisoning attacks in medical Q&A.
We develop a new detection-based defense to ensure the safe use of RAG.
arXiv Detail & Related papers (2024-09-12T02:43:40Z) - Rag and Roll: An End-to-End Evaluation of Indirect Prompt Manipulations in LLM-based Application Frameworks [12.061098193438022]
Retrieval Augmented Generation (RAG) is a technique commonly used to equip models with out of distribution knowledge.
This paper investigates the security of RAG systems against end-to-end indirect prompt manipulations.
arXiv Detail & Related papers (2024-08-09T12:26:05Z) - Machine Against the RAG: Jamming Retrieval-Augmented Generation with Blocker Documents [17.95339197094059]
Retrieval-augmented generation (RAG) systems respond to queries by retrieving relevant documents from a knowledge database, then generating an answer by applying an LLM to the retrieved documents.
We demonstrate that RAG systems that operate on databases with untrusted content are vulnerable to a new class of denial-of-service attacks we call jamming.
arXiv Detail & Related papers (2024-06-09T17:55:55Z) - A Theory for Token-Level Harmonization in Retrieval-Augmented Generation [76.75124161306795]
Retrieval-augmented generation (RAG) utilizes retrieved texts to enhance large language models (LLMs)
This paper provides a theory to explain and trade off the benefit and detriment in RAG.
Based on our theory, we propose a practical novel method, Tok-RAG, which achieves collaborative generation between the pure LLM and RAG.
arXiv Detail & Related papers (2024-06-03T02:56:14Z) - Is My Data in Your Retrieval Database? Membership Inference Attacks Against Retrieval Augmented Generation [0.9217021281095907]
We introduce an efficient and easy-to-use method for conducting a Membership Inference Attack (MIA) against RAG systems.
We demonstrate the effectiveness of our attack using two benchmark datasets and multiple generative models.
Our findings highlight the importance of implementing security countermeasures in deployed RAG systems.
arXiv Detail & Related papers (2024-05-30T19:46:36Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - The Good and The Bad: Exploring Privacy Issues in Retrieval-Augmented
Generation (RAG) [56.67603627046346]
Retrieval-augmented generation (RAG) is a powerful technique to facilitate language model with proprietary and private data.
In this work, we conduct empirical studies with novel attack methods, which demonstrate the vulnerability of RAG systems on leaking the private retrieval database.
arXiv Detail & Related papers (2024-02-23T18:35:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.