論文の概要: Phantom: General Trigger Attacks on Retrieval Augmented Language Generation
- arxiv url: http://arxiv.org/abs/2405.20485v1
- Date: Thu, 30 May 2024 21:19:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 18:05:15.028147
- Title: Phantom: General Trigger Attacks on Retrieval Augmented Language Generation
- Title(参考訳): Phantom: 検索言語生成に対する一般的なトリガー攻撃
- Authors: Harsh Chaudhari, Giorgio Severi, John Abascal, Matthew Jagielski, Christopher A. Choquette-Choo, Milad Nasr, Cristina Nita-Rotaru, Alina Oprea,
- Abstract要約: 我々は,被害者のRAGシステムに侵入する敵に対して,新たな攻撃面を提案する。
最初のステップは、RAGシステムによって回収されるように設計された有毒な文書を作成することである。
第2のステップでは、毒文書内の特殊に製作された敵文字列が、様々な敵攻撃を誘発する。
- 参考スコア(独自算出の注目度): 30.63258739968483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval Augmented Generation (RAG) expands the capabilities of modern large language models (LLMs) in chatbot applications, enabling developers to adapt and personalize the LLM output without expensive training or fine-tuning. RAG systems use an external knowledge database to retrieve the most relevant documents for a given query, providing this context to the LLM generator. While RAG achieves impressive utility in many applications, its adoption to enable personalized generative models introduces new security risks. In this work, we propose new attack surfaces for an adversary to compromise a victim's RAG system, by injecting a single malicious document in its knowledge database. We design Phantom, general two-step attack framework against RAG augmented LLMs. The first step involves crafting a poisoned document designed to be retrieved by the RAG system within the top-k results only when an adversarial trigger, a specific sequence of words acting as backdoor, is present in the victim's queries. In the second step, a specially crafted adversarial string within the poisoned document triggers various adversarial attacks in the LLM generator, including denial of service, reputation damage, privacy violations, and harmful behaviors. We demonstrate our attacks on multiple LLM architectures, including Gemma, Vicuna, and Llama.
- Abstract(参考訳): Retrieval Augmented Generation (RAG)は、チャットボットアプリケーションにおける現代の大規模言語モデル(LLM)の機能を拡張し、開発者は高価なトレーニングや微調整なしでLLM出力を適応およびパーソナライズすることができる。
RAGシステムは、外部知識データベースを使用して、あるクエリの最も関連性の高いドキュメントを検索し、LLMジェネレータにこのコンテキストを提供する。
RAGは多くのアプリケーションで素晴らしいユーティリティを実現しているが、パーソナライズされた生成モデルを実現するための採用は、新たなセキュリティリスクをもたらす。
本研究では,被害者のRAGシステムに悪意のある1つの文書をその知識データベースに注入することにより,被害者のRAGシステムを危険にさらすための新たな攻撃面を提案する。
我々は、RAG拡張LDMに対する一般的な2段階攻撃フレームワークであるPhantomを設計する。
最初のステップは、RAGシステムによって検索されるように設計された有毒な文書を、被害者のクエリにバックドアとして機能する特定の単語列である敵のトリガーが存在する場合にのみ、トップk結果内に作成することである。
第2のステップでは、毒文書内の特別に製作された敵文字列が、LLMジェネレータの様々な敵攻撃をトリガーし、サービス拒否、評判のダメージ、プライバシー侵害、有害な行為が引き起こされる。
我々はGemma、Vicuna、Llamaを含む複数のLLMアーキテクチャに対する攻撃を実演する。
関連論文リスト
- Aligning LLMs to Be Robust Against Prompt Injection [55.07562650579068]
インジェクション攻撃に対してLCMをより堅牢にするための強力なツールとしてアライメントが有効であることを示す。
私たちのメソッド -- SecAlign -- は、最初に、プロンプトインジェクション攻撃をシミュレートしてアライメントデータセットを構築します。
実験の結果,SecAlign は LLM を大幅に強化し,モデルの実用性に悪影響を及ぼすことが示された。
論文 参考訳(メタデータ) (2024-10-07T19:34:35Z) - MEGen: Generative Backdoor in Large Language Models via Model Editing [56.46183024683885]
大規模言語モデル(LLM)は目覚ましい能力を示している。
その強力な生成能力は、様々なクエリや命令に基づいて柔軟な応答を可能にする。
本稿では,最小サイドエフェクトでNLPタスクをカスタマイズしたバックドアを構築することを目的とした,MEGenという編集ベースの生成バックドアを提案する。
論文 参考訳(メタデータ) (2024-08-20T10:44:29Z) - Rag and Roll: An End-to-End Evaluation of Indirect Prompt Manipulations in LLM-based Application Frameworks [12.061098193438022]
Retrieval Augmented Generation (RAG) は、分散知識を欠くモデルによく用いられる手法である。
本稿では,RAGシステムのエンドツーエンドの間接的なプロンプト操作に対する安全性について検討する。
論文 参考訳(メタデータ) (2024-08-09T12:26:05Z) - h4rm3l: A Dynamic Benchmark of Composable Jailbreak Attacks for LLM Safety Assessment [48.5611060845958]
我々は,静的なデータセットや攻撃や被害を克服するために,構成可能なジェイルブレイク攻撃の新たなベンチマークを提案する。
我々は、h4rm3lを使用して、6つの最先端(SOTA)オープンソースおよびプロプライエタリなLLMをターゲットにした2656の新たなジェイルブレイク攻撃のデータセットを生成する。
合成攻撃のいくつかは、以前報告した攻撃よりも効果的であり、SOTAクローズド言語モデルでは、アタック成功率は90%以上である。
論文 参考訳(メタデータ) (2024-08-09T01:45:39Z) - Machine Against the RAG: Jamming Retrieval-Augmented Generation with Blocker Documents [17.95339197094059]
Retrieval-augmented Generation (RAG)システムは、関連する文書を知識データベースから検索し、検索した文書にLSMを適用して回答を生成する。
我々は、信頼できないコンテンツを持つデータベースで運用するRAGシステムが、私たちがジャミングと呼ぶ新しいタイプのサービス拒否攻撃に弱いことを実証した。
論文 参考訳(メタデータ) (2024-06-09T17:55:55Z) - TrojanRAG: Retrieval-Augmented Generation Can Be Backdoor Driver in Large Language Models [16.71019302192829]
大規模言語モデル(LLM)は、自然言語処理(NLP)において顕著なパフォーマンスにもかかわらず、潜在的なセキュリティ脅威に対する懸念を提起している。
バックドア攻撃は当初、LLMがあらゆる段階で重大な損害を受けていることを証明したが、コストとロバスト性は批判されている。
本稿では,Retrieval-Augmented Generationにおいて,共同でバックドア攻撃を行うTrojanRAGを提案する。
論文 参考訳(メタデータ) (2024-05-22T07:21:32Z) - Instruction Backdoor Attacks Against Customized LLMs [37.92008159382539]
我々は、信頼できないカスタマイズ LLM と統合されたアプリケーションに対して、最初の命令バックドアアタックを提案する。
私たちの攻撃には、単語レベル、構文レベル、意味レベルという3つのレベルの攻撃が含まれています。
本稿では,2つの防衛戦略を提案し,その効果を実証する。
論文 参考訳(メタデータ) (2024-02-14T13:47:35Z) - PoisonedRAG: Knowledge Corruption Attacks to Retrieval-Augmented Generation of Large Language Models [45.409248316497674]
大規模言語モデル(LLM)は、その例外的な生成能力により、顕著な成功を収めた。
Retrieval-Augmented Generation (RAG)は、これらの制限を緩和するための最先端技術である。
RAGシステムにおける知識データベースは,新たな,実用的な攻撃面を導入している。
この攻撃面に基づいて,RAGに対する最初の知識汚職攻撃であるPoisonedRAGを提案する。
論文 参考訳(メタデータ) (2024-02-12T18:28:36Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
SmoothLLMは,大規模言語モデル(LLM)に対するジェイルブレーキング攻撃を軽減するために設計された,最初のアルゴリズムである。
敵が生成したプロンプトが文字レベルの変化に対して脆弱であることから、我々の防衛はまず、与えられた入力プロンプトの複数のコピーをランダムに摂動し、対応する予測を集約し、敵の入力を検出する。
論文 参考訳(メタデータ) (2023-10-05T17:01:53Z) - Universal and Transferable Adversarial Attacks on Aligned Language
Models [118.41733208825278]
本稿では,アライメント言語モデルに反抗的な振る舞いを生じさせる,シンプルで効果的な攻撃手法を提案する。
驚いたことに、我々のアプローチによって生じる敵のプロンプトは、かなり伝達可能である。
論文 参考訳(メタデータ) (2023-07-27T17:49:12Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
大規模言語モデル(LLM)は、様々なアプリケーションに統合されつつある。
本稿では、プロンプトインジェクション攻撃を用いて、攻撃者が元の命令をオーバーライドし、制御を採用する方法を示す。
我々は、コンピュータセキュリティの観点から、影響や脆弱性を体系的に調査する包括的な分類法を導出する。
論文 参考訳(メタデータ) (2023-02-23T17:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。