Policy Trees for Prediction: Interpretable and Adaptive Model Selection for Machine Learning
- URL: http://arxiv.org/abs/2405.20486v1
- Date: Thu, 30 May 2024 21:21:33 GMT
- Title: Policy Trees for Prediction: Interpretable and Adaptive Model Selection for Machine Learning
- Authors: Dimitris Bertsimas, Matthew Peroni,
- Abstract summary: We introduce a tree-based approach, Optimal Predictive-Policy Trees (OP2T), that yields interpretable policies for adaptively selecting a predictive model or ensemble.
Our approach enables interpretable and adaptive model selection and rejection while only assuming access to model outputs.
We evaluate our approach on real-world datasets, including regression and classification tasks with both structured and unstructured data.
- Score: 5.877778007271621
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As a multitude of capable machine learning (ML) models become widely available in forms such as open-source software and public APIs, central questions remain regarding their use in real-world applications, especially in high-stakes decision-making. Is there always one best model that should be used? When are the models likely to be error-prone? Should a black-box or interpretable model be used? In this work, we develop a prescriptive methodology to address these key questions, introducing a tree-based approach, Optimal Predictive-Policy Trees (OP2T), that yields interpretable policies for adaptively selecting a predictive model or ensemble, along with a parameterized option to reject making a prediction. We base our methods on learning globally optimized prescriptive trees. Our approach enables interpretable and adaptive model selection and rejection while only assuming access to model outputs. By learning policies over different feature spaces, including the model outputs, our approach works with both structured and unstructured datasets. We evaluate our approach on real-world datasets, including regression and classification tasks with both structured and unstructured data. We demonstrate that our approach provides both strong performance against baseline methods while yielding insights that help answer critical questions about which models to use, and when.
Related papers
- Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - PAMI: partition input and aggregate outputs for model interpretation [69.42924964776766]
In this study, a simple yet effective visualization framework called PAMI is proposed based on the observation that deep learning models often aggregate features from local regions for model predictions.
The basic idea is to mask majority of the input and use the corresponding model output as the relative contribution of the preserved input part to the original model prediction.
Extensive experiments on multiple tasks confirm the proposed method performs better than existing visualization approaches in more precisely finding class-specific input regions.
arXiv Detail & Related papers (2023-02-07T08:48:34Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
Consider making a prediction over new test data without any opportunity to learn from a training set of labelled data.
Give access to a set of expert models and their predictions alongside some limited information about the dataset used to train them.
arXiv Detail & Related papers (2022-10-11T10:20:31Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Deep Learning with Multiple Data Set: A Weighted Goal Programming
Approach [2.7393821783237184]
Large-scale data analysis is growing at an exponential rate as data proliferates in our societies.
Deep Learning models require plenty of resources, and distributed training is needed.
This paper presents a Multicriteria approach for distributed learning.
arXiv Detail & Related papers (2021-11-27T07:10:25Z) - On-Policy Model Errors in Reinforcement Learning [9.507323314334572]
We present a novel method that combines real world data and a learned model in order to get the best of both worlds.
The core idea is to exploit the real world data for on-policy predictions and use the learned model only to generalize to different actions.
We show that our method can drastically improve existing model-based approaches without introducing additional tuning parameters.
arXiv Detail & Related papers (2021-10-15T10:15:53Z) - Predicting Census Survey Response Rates With Parsimonious Additive
Models and Structured Interactions [14.003044924094597]
We consider the problem of predicting survey response rates using a family of flexible and interpretable nonparametric models.
The study is motivated by the US Census Bureau's well-known ROAM application.
arXiv Detail & Related papers (2021-08-24T17:49:55Z) - PSD2 Explainable AI Model for Credit Scoring [0.0]
The aim of this project is to develop and test advanced analytical methods to improve the prediction accuracy of Credit Risk Models.
The project focuses on applying an explainable machine learning model to bank-related databases.
arXiv Detail & Related papers (2020-11-20T12:12:38Z) - Probabilistic Case-based Reasoning for Open-World Knowledge Graph
Completion [59.549664231655726]
A case-based reasoning (CBR) system solves a new problem by retrieving cases' that are similar to the given problem.
In this paper, we demonstrate that such a system is achievable for reasoning in knowledge-bases (KBs)
Our approach predicts attributes for an entity by gathering reasoning paths from similar entities in the KB.
arXiv Detail & Related papers (2020-10-07T17:48:12Z) - Monotonic Cardinality Estimation of Similarity Selection: A Deep
Learning Approach [22.958342743597044]
We investigate the possibilities of utilizing deep learning for cardinality estimation of similarity selection.
We propose a novel and generic method that can be applied to any data type and distance function.
arXiv Detail & Related papers (2020-02-15T20:22:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.