論文の概要: Probabilities of Causation for Continuous and Vector Variables
- arxiv url: http://arxiv.org/abs/2405.20487v1
- Date: Thu, 30 May 2024 21:22:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 18:05:15.022985
- Title: Probabilities of Causation for Continuous and Vector Variables
- Title(参考訳): 連続・ベクトル変数に対する因果関係の確率
- Authors: Yuta Kawakami, Manabu Kuroki, Jin Tian,
- Abstract要約: 因果関係の確率(PoC)は、説明可能な人工知能と実践的な意思決定のための貴重な概念である。
我々はPoCの概念を連続的な治療と結果変数に拡張し、さらにPoCを一般化して複数の治療と複数の結果の間の因果効果を捉える。
- 参考スコア(独自算出の注目度): 15.500981567851962
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Probabilities of causation (PoC) are valuable concepts for explainable artificial intelligence and practical decision-making. PoC are originally defined for scalar binary variables. In this paper, we extend the concept of PoC to continuous treatment and outcome variables, and further generalize PoC to capture causal effects between multiple treatments and multiple outcomes. In addition, we consider PoC for a sub-population and PoC with multi-hypothetical terms to capture more sophisticated counterfactual information useful for decision-making. We provide a nonparametric identification theorem for each type of PoC we introduce. Finally, we illustrate the application of our results on a real-world dataset about education.
- Abstract(参考訳): 因果関係の確率(PoC)は、説明可能な人工知能と実践的な意思決定のための貴重な概念である。
PoCはもともとスカラーバイナリ変数として定義されている。
本稿では、PoCの概念を連続処理と結果変数に拡張し、さらにPoCを一般化し、複数の処理と複数の結果の間の因果効果を捉える。
さらに,PoCをサブポピュレーションとして,PoCを多義的な用語で表現することで,意思決定に有用なより洗練された偽情報を取得する。
導入するPoCのタイプ毎に非パラメトリック同定定理を提供する。
最後に、実世界の教育に関するデータセットに結果の適用について説明する。
関連論文リスト
- Vector Quantile Regression on Manifolds [8.328891187733841]
QR(Quantile regression)は、対象変数の条件量子化の分布自由度推定のための統計ツールである。
最適輸送理論とc-凹関数を活用することにより、高次元変数の条件ベクトル量子関数を有意に定義する。
提案手法の有効性を実証し, 合成および実データ実験による非ユークリッド量子化の意味に関する知見を提供する。
論文 参考訳(メタデータ) (2023-07-03T14:17:12Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
逐次決定問題は、予測状態表現(PSR)によってモデル化された低ランク構造が認められる場合、統計的に学習可能である
本稿では,推定モデルと実モデル間の全変動距離を上限とする新しいボーナス項を特徴とする,PSRに対する最初のUCB型アプローチを提案する。
PSRに対する既存のアプローチとは対照的に、UCB型アルゴリズムは計算的トラクタビリティ、最優先の準最適ポリシー、モデルの精度が保証される。
論文 参考訳(メタデータ) (2023-07-01T18:35:21Z) - Bounding probabilities of causation through the causal marginal problem [12.542533707005092]
因果関係の確率は、法律、医療、公共政策における意思決定において基本的な役割を担っている。
多くの臨床試験や公共政策評価ケースでは、異なる治療が同じ結果変数に与える影響を調べる独立したデータセットが存在する。
本稿では、このような独立したデータセットから構築されたSCM間の対実的整合性を示すことにより、因果関係の確率に対する既存の限界を著しく厳格化する方法について概説する。
論文 参考訳(メタデータ) (2023-04-04T12:16:38Z) - Bayesian Hierarchical Models for Counterfactual Estimation [12.159830463756341]
本稿では,多種多様なカウンターファクトの集合を推定する確率的パラダイムを提案する。
摂動を事前分布関数によるランダム変数として扱う。
収束特性の優れた勾配ベースサンプリング器は、後方サンプルを効率的に計算する。
論文 参考訳(メタデータ) (2023-01-21T00:21:11Z) - Quantile Off-Policy Evaluation via Deep Conditional Generative Learning [21.448553360543478]
Off-Policy Evaluation (OPE) は、潜在的に異なる行動ポリシーによって生成されたオフラインデータを用いて、新しいターゲットポリシーを評価することに関心がある。
本稿では、逐次決定における量子OPEの2倍のロス率推論手順を提案する。
本提案手法の利点は,シミュレーションと,ショートビデオプラットフォームによる実世界のデータセットの両方を用いて示す。
論文 参考訳(メタデータ) (2022-12-29T22:01:43Z) - Reinforcement Learning with Heterogeneous Data: Estimation and Inference [84.72174994749305]
人口の不均一性に関する逐次的決定問題に対処するために,K-ヘテロ・マルコフ決定過程(K-ヘテロ・MDP)を導入する。
本稿では、ある政策の価値を推定するための自己クラスタ化政策評価(ACPE)と、ある政策クラスにおける最適な政策を推定するための自己クラスタ化政策イテレーション(ACPI)を提案する。
理論的な知見を裏付けるシミュレーションを行い,MIMIC-III標準データセットの実証的研究を行った。
論文 参考訳(メタデータ) (2022-01-31T20:58:47Z) - Proximal Reinforcement Learning: Efficient Off-Policy Evaluation in
Partially Observed Markov Decision Processes [65.91730154730905]
医療や教育などの観察データへのオフライン強化学習の適用においては、観察された行動は観測されていない要因に影響される可能性があるという一般的な懸念がある。
ここでは、部分的に観察されたマルコフ決定過程(POMDP)における非政治評価を考慮し、この問題に取り組む。
我々は、近位因果推論の枠組みをPOMDP設定に拡張し、識別が可能となる様々な設定を提供する。
論文 参考訳(メタデータ) (2021-10-28T17:46:14Z) - Identifiable Energy-based Representations: An Application to Estimating
Heterogeneous Causal Effects [83.66276516095665]
条件付き平均治療効果(CATEs)は、多数の個体にまたがる不均一性について理解することができる。
典型的なCATE学習者は、CATEが識別可能であるために、すべての共起変数が測定されていると仮定する。
本稿では,ノイズコントラッシブ損失関数を用いて,変数の低次元表現を学習するエネルギーベースモデルを提案する。
論文 参考訳(メタデータ) (2021-08-06T10:39:49Z) - DISSECT: Disentangled Simultaneous Explanations via Concept Traversals [33.65478845353047]
DISSECTは、ディープラーニングモデル推論を説明するための新しいアプローチである。
DISSECTは、分類器の信号から生成モデルを訓練することにより、異なる概念の分類器固有の「名詞」を発見する方法を提供する。
DISSECTは,複数の概念を分離し,共同訓練による推論と結合したCTを生成する。
論文 参考訳(メタデータ) (2021-05-31T17:11:56Z) - Probabilistic Generating Circuits [50.98473654244851]
効率的な表現のための確率的生成回路(PGC)を提案する。
PGCは、非常に異なる既存モデルを統一する理論的なフレームワークであるだけでなく、現実的なデータをモデル化する大きな可能性も示している。
我々はPCとDPPの単純な組み合わせによって簡単に仮定されない単純なPGCのクラスを示し、一連の密度推定ベンチマークで競合性能を得る。
論文 参考訳(メタデータ) (2021-02-19T07:06:53Z) - Latent Causal Invariant Model [128.7508609492542]
現在の教師付き学習は、データ適合プロセス中に急激な相関を学習することができる。
因果予測を求める潜在因果不変モデル(LaCIM)を提案する。
論文 参考訳(メタデータ) (2020-11-04T10:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。