論文の概要: Universal evaluation and design of imaging systems using information estimation
- arxiv url: http://arxiv.org/abs/2405.20559v1
- Date: Fri, 31 May 2024 00:57:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 15:55:52.602806
- Title: Universal evaluation and design of imaging systems using information estimation
- Title(参考訳): 情報推定を用いたイメージングシステムの普遍的評価と設計
- Authors: Henry Pinkard, Leyla Kabuli, Eric Markley, Tiffany Chien, Jiantao Jiao, Laura Waller,
- Abstract要約: 物理的制約を考慮に入れる上での課題に対処する枠組みを導入する。
本研究では,雑音測定のデータセットのみを用いて,情報を推定する手法を開発した。
また、最大情報キャプチャのための画像ハードウェア設計を最適化する手法である、情報駆動分析学習についても紹介する。
- 参考スコア(独自算出の注目度): 13.875054825191292
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Information theory, which describes the transmission of signals in the presence of noise, has enabled the development of reliable communication systems that underlie the modern world. Imaging systems can also be viewed as a form of communication, in which information about the object is "transmitted" through images. However, the application of information theory to imaging systems has been limited by the challenges of accounting for their physical constraints. Here, we introduce a framework that addresses these limitations by modeling the probabilistic relationship between objects and their measurements. Using this framework, we develop a method to estimate information using only a dataset of noisy measurements, without making any assumptions about the image formation process. We demonstrate that these estimates comprehensively quantify measurement quality across a diverse range of imaging systems and applications. Furthermore, we introduce Information-Driven Encoder Analysis Learning (IDEAL), a technique to optimize the design of imaging hardware for maximum information capture. This work provides new insights into the fundamental performance limits of imaging systems and offers powerful new tools for their analysis and design.
- Abstract(参考訳): ノイズの存在下での信号伝達を記述した情報理論は,現代社会を支える信頼性の高い通信システムの開発を可能にしている。
イメージングシステムは、オブジェクトに関する情報が画像を通して"送信"される通信の形式として見ることもできる。
しかし、画像システムへの情報理論の適用は、その物理的制約を考慮に入れることの難しさによって制限されてきた。
本稿では,オブジェクトとその測定値の確率的関係をモデル化することにより,これらの制約に対処するフレームワークを提案する。
この枠組みを用いて,画像形成過程を仮定することなく,ノイズ測定のデータセットのみを用いて情報を推定する手法を開発した。
これらの推定値が様々な画像システムやアプリケーションで測定品質を包括的に定量化できることを実証する。
さらに,最大情報取得のための画像ハードウェアの設計を最適化する手法である情報駆動型エンコーダ解析学習(IDEAL)を導入する。
この研究は、イメージングシステムの基本性能限界に関する新たな洞察を与え、その分析と設計のための強力な新しいツールを提供する。
関連論文リスト
- Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Combining Variational Autoencoders and Physical Bias for Improved
Microscopy Data Analysis [0.0]
本稿では,データ内の変数の因子を分散させる物理拡張機械学習手法を提案する。
本手法はNiO-LSMO, BiFeO3, グラフェンなど様々な材料に適用される。
その結果,大量の画像データから有意な情報を抽出する手法の有効性が示された。
論文 参考訳(メタデータ) (2023-02-08T17:35:38Z) - Monocular Depth Estimation Using Cues Inspired by Biological Vision
Systems [22.539300644593936]
単眼深度推定(MDE)は、シーンのRGB画像を同じカメラビューから画素幅の深度マップに変換することを目的としている。
MDEタスクの一部は、画像内のどの視覚的手がかりを深度推定に使用できるか、どのように使うかを学ぶことである。
モデルに視覚的キュー情報を明示的に注入することは深度推定に有用であることを示す。
論文 参考訳(メタデータ) (2022-04-21T19:42:36Z) - A workflow for segmenting soil and plant X-ray CT images with deep
learning in Googles Colaboratory [45.99558884106628]
我々はX線マイクロCT画像に畳み込みニューラルネットワークを適用するためのモジュラーワークフローを開発した。
クルミの葉, アーモンドの花芽, 土壌集合体のサンプルスキャンを用いて, 最適な結果を得るために, パラメータを最適化する方法を示す。
論文 参考訳(メタデータ) (2022-03-18T00:47:32Z) - Information-Theoretic Odometry Learning [83.36195426897768]
生体計測推定を目的とした学習動機付け手法のための統合情報理論フレームワークを提案する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
論文 参考訳(メタデータ) (2022-03-11T02:37:35Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - The Intrinsic Dimension of Images and Its Impact on Learning [60.811039723427676]
自然画像データは従来の画素表現の高次元にもかかわらず低次元構造を示すと広く信じられている。
本研究では,一般的なデータセットに次元推定ツールを適用し,深層学習における低次元構造の役割を検討する。
論文 参考訳(メタデータ) (2021-04-18T16:29:23Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
本稿では、2つの学習可能なニューラルモジュールからなる物理駆動型生成手法を提案する。
データ合成フレームワークは、複数のデータセットの下流セグメンテーション性能を改善する。
論文 参考訳(メタデータ) (2020-09-01T19:17:46Z) - Online Graph Completion: Multivariate Signal Recovery in Computer Vision [29.89364298411089]
グラフ上で定義された「完了」問題について検討し、追加測定の要求を順次行う必要がある。
グラフのフーリエ領域における最適化モデルを設計し、適応的な部分モジュラー性に基づくアイデアが実際にうまく機能するアルゴリズムをどう提供するかを記述する。
Imgurから収集した大量の画像では、分類が難しい画像について有望な結果が得られます。
論文 参考訳(メタデータ) (2020-08-12T01:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。