HOPE: A Reinforcement Learning-based Hybrid Policy Path Planner for Diverse Parking Scenarios
- URL: http://arxiv.org/abs/2405.20579v2
- Date: Fri, 5 Jul 2024 02:11:54 GMT
- Title: HOPE: A Reinforcement Learning-based Hybrid Policy Path Planner for Diverse Parking Scenarios
- Authors: Mingyang Jiang, Yueyuan Li, Songan Zhang, Siyuan Chen, Chunxiang Wang, Ming Yang,
- Abstract summary: We introduce Hybrid pOlicy Path plannEr (HOPE) to handle diverse and complex parking scenarios.
HOPE integrates a reinforcement learning agent with Reeds-Shepp curves, enabling effective planning across diverse scenarios.
We propose a criterion for categorizing the difficulty level of parking scenarios based on space and obstacle distribution.
- Score: 24.25807334214834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated parking stands as a highly anticipated application of autonomous driving technology. However, existing path planning methodologies fall short of addressing this need due to their incapability to handle the diverse and complex parking scenarios in reality. While non-learning methods provide reliable planning results, they are vulnerable to intricate occasions, whereas learning-based ones are good at exploration but unstable in converging to feasible solutions. To leverage the strengths of both approaches, we introduce Hybrid pOlicy Path plannEr (HOPE). This novel solution integrates a reinforcement learning agent with Reeds-Shepp curves, enabling effective planning across diverse scenarios. HOPE guides the exploration of the reinforcement learning agent by applying an action mask mechanism and employs a transformer to integrate the perceived environmental information with the mask. To facilitate the training and evaluation of the proposed planner, we propose a criterion for categorizing the difficulty level of parking scenarios based on space and obstacle distribution. Experimental results demonstrate that our approach outperforms typical rule-based algorithms and traditional reinforcement learning methods, showing higher planning success rates and generalization across various scenarios. We also conduct real-world experiments to verify the practicability of HOPE. The code for our solution will be openly available on \href{GitHub}{https://github.com/jiamiya/HOPE}.
Related papers
- ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable [88.08120417169971]
Machine learning based autonomous driving systems often face challenges with safety-critical scenarios that are rare in real-world data.
This work explores generating safety-critical driving scenarios by modifying complex real-world regular scenarios through trajectory optimization.
Our approach addresses unrealistic diverging trajectories and unavoidable collision scenarios that are not useful for training robust planner.
arXiv Detail & Related papers (2024-09-12T08:26:33Z) - LLM-Assist: Enhancing Closed-Loop Planning with Language-Based Reasoning [65.86754998249224]
We develop a novel hybrid planner that leverages a conventional rule-based planner in conjunction with an LLM-based planner.
Our approach navigates complex scenarios which existing planners struggle with, produces well-reasoned outputs while also remaining grounded through working alongside the rule-based approach.
arXiv Detail & Related papers (2023-12-30T02:53:45Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
We propose a new method, called PiZero, that gives an agent the ability to plan in an abstract search space that the agent learns during training.
We evaluate our method on multiple domains, including the traveling salesman problem, Sokoban, 2048, the facility location problem, and Pacman.
arXiv Detail & Related papers (2023-08-16T22:47:16Z) - Integration of Reinforcement Learning Based Behavior Planning With
Sampling Based Motion Planning for Automated Driving [0.5801044612920815]
We propose a method to employ a trained deep reinforcement learning policy for dedicated high-level behavior planning.
To the best of our knowledge, this work is the first to apply deep reinforcement learning in this manner.
arXiv Detail & Related papers (2023-04-17T13:49:55Z) - NeurIPS 2022 Competition: Driving SMARTS [60.948652154552136]
Driving SMARTS is a regular competition designed to tackle problems caused by the distribution shift in dynamic interaction contexts.
The proposed competition supports methodologically diverse solutions, such as reinforcement learning (RL) and offline learning methods.
arXiv Detail & Related papers (2022-11-14T17:10:53Z) - Adaptive Decision Making at the Intersection for Autonomous Vehicles
Based on Skill Discovery [13.134487965031667]
In urban environments, the complex and uncertain intersection scenarios are challenging for autonomous driving.
To ensure safety, it is crucial to develop an adaptive decision making system that can handle the interaction with other vehicles.
We propose a hierarchical framework that can autonomously accumulate and reuse knowledge.
arXiv Detail & Related papers (2022-07-24T11:56:45Z) - Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in
Latent Space [76.46113138484947]
General-purpose robots require diverse repertoires of behaviors to complete challenging tasks in real-world unstructured environments.
To address this issue, goal-conditioned reinforcement learning aims to acquire policies that can reach goals for a wide range of tasks on command.
We propose Planning to Practice, a method that makes it practical to train goal-conditioned policies for long-horizon tasks.
arXiv Detail & Related papers (2022-05-17T06:58:17Z) - Optimizing Trajectories for Highway Driving with Offline Reinforcement
Learning [11.970409518725491]
We propose a Reinforcement Learning-based approach to autonomous driving.
We compare the performance of our agent against four other highway driving agents.
We demonstrate that our offline trained agent, with randomly collected data, learns to drive smoothly, achieving as close as possible to the desired velocity, while outperforming the other agents.
arXiv Detail & Related papers (2022-03-21T13:13:08Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVE is a method to automatically generate challenging scenarios that cause a given planner to produce undesirable behavior, like collisions.
To maintain scenario plausibility, the key idea is to leverage a learned model of traffic motion in the form of a graph-based conditional VAE.
A subsequent optimization is used to find a "solution" to the scenario, ensuring it is useful to improve the given planner.
arXiv Detail & Related papers (2021-12-09T18:03:27Z) - Behavior Planning at Urban Intersections through Hierarchical
Reinforcement Learning [25.50973559614565]
In this work, we propose a behavior planning structure based on reinforcement learning (RL) which is capable of performing autonomous vehicle behavior planning with a hierarchical structure in simulated urban environments.
Our algorithms can perform better than rule-based methods for elective decisions such as when to turn left between vehicles approaching from the opposite direction or possible lane-change when approaching an intersection due to lane blockage or delay in front of the ego car.
Results also show that the proposed method converges to an optimal policy faster than traditional RL methods.
arXiv Detail & Related papers (2020-11-09T19:23:26Z) - Efficient Exploration in Constrained Environments with Goal-Oriented
Reference Path [15.679210057474922]
We train a deep convolutional network that can predict collision-free paths based on a map of the environment.
This is then used by a reinforcement learning algorithm to learn to closely follow the path.
We show that our method consistently improves the sample efficiency and generalization capability to novel environments.
arXiv Detail & Related papers (2020-03-03T17:07:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.