論文の概要: LInK: Learning Joint Representations of Design and Performance Spaces through Contrastive Learning for Mechanism Synthesis
- arxiv url: http://arxiv.org/abs/2405.20592v2
- Date: Fri, 04 Oct 2024 17:13:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-07 15:07:40.491131
- Title: LInK: Learning Joint Representations of Design and Performance Spaces through Contrastive Learning for Mechanism Synthesis
- Title(参考訳): LInK:メカニズム合成のためのコントラスト学習による設計空間と性能空間の合同表現の学習
- Authors: Amin Heyrani Nobari, Akash Srivastava, Dan Gutfreund, Kai Xu, Faez Ahmed,
- Abstract要約: 本稿では,性能と設計空間のコントラスト学習と最適化手法を統合する新しいフレームワークであるLInKを紹介する。
マルチモーダルおよび変換不変のコントラスト学習フレームワークを活用することで、LInKは複雑な物理学とメカニズムの設計表現をキャプチャする共同表現を学習する。
以上の結果から,LInKは機構設計の分野を進展させるだけでなく,他の工学分野へのコントラスト学習や最適化の適用性も拡大することが示された。
- 参考スコア(独自算出の注目度): 15.793704096341523
- License:
- Abstract: In this paper, we introduce LInK, a novel framework that integrates contrastive learning of performance and design space with optimization techniques for solving complex inverse problems in engineering design with discrete and continuous variables. We focus on the path synthesis problem for planar linkage mechanisms. By leveraging a multimodal and transformation-invariant contrastive learning framework, LInK learns a joint representation that captures complex physics and design representations of mechanisms, enabling rapid retrieval from a vast dataset of over 10 million mechanisms. This approach improves precision through the warm start of a hierarchical unconstrained nonlinear optimization algorithm, combining the robustness of traditional optimization with the speed and adaptability of modern deep learning methods. Our results on an existing benchmark demonstrate that LInK outperforms existing methods with 28 times less error compared to a state of the art approach while taking 20 times less time on an existing benchmark. Moreover, we introduce a significantly more challenging benchmark, named LINK ABC, which involves synthesizing linkages that trace the trajectories of English capital alphabets, an inverse design benchmark task that existing methods struggle with due to large nonlinearities and tiny feasible space. Our results demonstrate that LInK not only advances the field of mechanism design but also broadens the applicability of contrastive learning and optimization to other areas of engineering. The code and data are publicly available at https://github.com/ahnobari/LInK.
- Abstract(参考訳): 本稿では,工学設計における複雑な逆問題と離散的かつ連続的な変数との解法を最適化するために,性能と設計空間のコントラスト学習を統合した新しいフレームワークであるLInKを紹介する。
平面リンク機構の経路合成問題に着目する。
マルチモーダルおよび変換不変のコントラスト学習フレームワークを活用することで、LInKは複雑な物理とメカニズムの設計表現をキャプチャする共同表現を学び、1000万以上のメカニズムからなる膨大なデータセットから迅速な検索を可能にする。
このアプローチは、階層的非制約非線形最適化アルゴリズムのウォームスタートにより、従来の最適化のロバスト性と、現代のディープラーニング手法の速度と適応性を組み合わせることにより、精度を向上する。
既存のベンチマークでは、LInKは既存のベンチマークの20倍の時間を要し、最先端のアプローチに比べて28倍のエラー率で既存のメソッドよりも優れていることを示した。
さらに、LINK ABCという、英語の大文字の軌跡を辿るリンクの合成を含む、より困難なベンチマークを導入し、既存の手法が大きな非線形性と小さな実現可能な空間のために苦労する逆設計ベンチマークタスクを紹介した。
以上の結果から,LInKは機構設計の分野を進展させるだけでなく,他の工学分野へのコントラスト学習や最適化の適用性も拡大することが示された。
コードとデータはhttps://github.com/ahnobari/LInK.comで公開されている。
関連論文リスト
- Optimization by Parallel Quasi-Quantum Annealing with Gradient-Based Sampling [0.0]
本研究では、連続緩和による勾配に基づく更新と準量子アナリング(QQA)を組み合わせた別のアプローチを提案する。
数値実験により,本手法はiSCOと学習型解法に匹敵する性能を有する汎用解法であることが示された。
論文 参考訳(メタデータ) (2024-09-02T12:55:27Z) - PRANCE: Joint Token-Optimization and Structural Channel-Pruning for Adaptive ViT Inference [44.77064952091458]
PRANCEはVision Transformer圧縮フレームワークで、アクティベートされたチャネルを共同で最適化し、入力の特性に基づいてトークンを削減する。
本稿では,ViTの推論過程を逐次決定プロセスとしてモデル化する,新しい「結果と結果」学習機構を提案する。
我々のフレームワークは、プルーニング、マージング、プルーニングマージングといった様々なトークン最適化手法と互換性があることが示されている。
論文 参考訳(メタデータ) (2024-07-06T09:04:27Z) - Self-Improved Learning for Scalable Neural Combinatorial Optimization [15.842155380912002]
本研究は、ニューラルネットワーク最適化のスケーラビリティを向上させるための新しい自己改善学習(SIL)手法を提案する。
我々は,ラベル付きデータを使わずに大規模問題インスタンス上での直接モデルトレーニングを可能にする,効率的な自己改善機構を開発した。
さらに,計算モデルに対する線形注意複雑化機構を設計し,オーバヘッドの少ない大規模問題インスタンスを効率的に処理する。
論文 参考訳(メタデータ) (2024-03-28T16:46:53Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Transformer-based Machine Learning for Fast SAT Solvers and Logic
Synthesis [63.53283025435107]
CNFベースのSATとMaxSATは論理合成と検証システムの中心である。
そこで本研究では,Transformerアーキテクチャから派生したワンショットモデルを用いて,MaxSAT問題の解法を提案する。
論文 参考訳(メタデータ) (2021-07-15T04:47:35Z) - Amortized Synthesis of Constrained Configurations Using a Differentiable
Surrogate [25.125736560730864]
設計、製造、制御の問題において、我々はしばしば合成の課題に直面している。
この多対一の地図は、フィードフォワード合成の教師あり学習に挑戦する。
どちらの問題にも,オートエンコーダであると考えられる2段階のニューラルネットワークアーキテクチャで対処する。
論文 参考訳(メタデータ) (2021-06-16T17:59:45Z) - Collaborative Multidisciplinary Design Optimization with Neural Networks [1.2691047660244335]
協調最適化の場合、二項分類の興味深い問題を解くことにより、より高速で信頼性の高い収束が得られることを示す。
本稿では,非対称な損失関数,リプシッツ連続性を保証する構造,基本距離関数の性質を尊重する正規化を含むニューラルネットワークのトレーニングを提案する。
論文 参考訳(メタデータ) (2021-06-11T00:03:47Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
本研究では,連続空間の逆設計問題を,制約のないバイナリ最適化問題にマッピングする,汎用的な機械学習ベースのフレームワークを開発する。
本研究では, 熱発光トポロジを熱光応用に最適化し, (ii) 高効率ビームステアリングのための拡散メタグレーティングを行うことにより, 2つの逆設計問題に対するフレームワークの性能を示す。
論文 参考訳(メタデータ) (2021-05-06T02:22:23Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
分散的ロバストな教師付き学習は、現実世界のアプリケーションのための信頼性の高い機械学習システムを構築するための重要なパラダイムとして登場している。
Wasserstein DRSLを解くための既存のアルゴリズムは、複雑なサブプロブレムを解くか、勾配を利用するのに失敗する。
我々はmin-max最適化のレンズを通してwaserstein drslを再検討し、スケーラブルで効率的に実装可能な超勾配アルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-04-27T16:56:09Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
本稿では,GDC(Generative, Discriminative, and Corrective)の原則を集約する,最適化に着想を得た統合学習フレームワークを提案する。
フレキシブルな組み合わせで最適化モデルを効果的に解くために,3つのプロパゲーティブモジュールを構築した。
低レベル視覚タスクにおける実験は、GDCの有効性と適応性を検証する。
論文 参考訳(メタデータ) (2020-12-10T03:24:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。