論文の概要: Heterophilous Distribution Propagation for Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2405.20640v1
- Date: Fri, 31 May 2024 06:40:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 15:26:33.629057
- Title: Heterophilous Distribution Propagation for Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークのヘテロ親和性分布伝播
- Authors: Zhuonan Zheng, Sheng Zhou, Hongjia Xu, Ming Gu, Yilun Xu, Ao Li, Yuhong Li, Jingjun Gu, Jiajun Bu,
- Abstract要約: グラフニューラルネットワークのための異種分布伝播(HDP)を提案する。
すべての近隣から情報を集約する代わりに、HDPは隣人をホモ親和性および不テロ親和性の部分に適応的に分離する。
我々は、異なるレベルのホモフィリーを持つ9つのベンチマークデータセットに対して広範な実験を行う。
- 参考スコア(独自算出の注目度): 23.897535976924722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have achieved remarkable success in various graph mining tasks by aggregating information from neighborhoods for representation learning. The success relies on the homophily assumption that nearby nodes exhibit similar behaviors, while it may be violated in many real-world graphs. Recently, heterophilous graph neural networks (HeterGNNs) have attracted increasing attention by modifying the neural message passing schema for heterophilous neighborhoods. However, they suffer from insufficient neighborhood partition and heterophily modeling, both of which are critical but challenging to break through. To tackle these challenges, in this paper, we propose heterophilous distribution propagation (HDP) for graph neural networks. Instead of aggregating information from all neighborhoods, HDP adaptively separates the neighbors into homophilous and heterphilous parts based on the pseudo assignments during training. The heterophilous neighborhood distribution is learned with orthogonality-oriented constraint via a trusted prototype contrastive learning paradigm. Both the homophilous and heterophilous patterns are propagated with a novel semantic-aware message passing mechanism. We conduct extensive experiments on 9 benchmark datasets with different levels of homophily. Experimental results show that our method outperforms representative baselines on heterophilous datasets.
- Abstract(参考訳): グラフニューラルネットワーク (GNN) は, グラフマイニングにおいて, 周辺地域からの情報を集約し, 表現学習に成功している。
この成功は、近傍のノードが類似した振る舞いを示すというホモフィリーな仮定に依存している。
近年,異種グラフニューラルネットワーク (HeterGNN) が注目されている。
しかし、それらは不十分な地区分割とヘテロフィリモデリングに悩まされており、どちらも重大なものであるが、突破は困難である。
本稿では,これらの課題に対処するために,グラフニューラルネットワークのためのヘテロ親和性分布伝播(HDP)を提案する。
すべての近隣から情報を集約する代わりに、HDPは訓練中に擬似的な割り当てに基づいて隣人をホモフィルとヘテロフィルに適応的に分離する。
ヘテロ親和性近傍の分布は、信頼されたプロトタイプのコントラスト学習パラダイムを通じて直交性指向の制約で学習される。
ホモ親和性パターンとヘテロ親和性パターンの両方が、新しいセマンティック・アウェア・メッセージパッシング機構によって伝播される。
我々は、異なるレベルのホモフィリーを持つ9つのベンチマークデータセットに対して広範な実験を行う。
実験結果から,本手法は異種データセットにおける代表的ベースラインよりも優れていた。
関連論文リスト
- The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
ホモフィリ原理では、同じラベルや類似属性を持つieノードが接続される可能性が高い。
最近の研究で、GNNのパフォーマンスとNNのパフォーマンスが満足できない非自明なデータセットが特定されている。
論文 参考訳(メタデータ) (2024-07-12T18:04:32Z) - The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs [59.03660013787925]
ヘテロフィリー・スノーフレーク仮説を導入し、ヘテロ親和性グラフの研究をガイドし、促進するための効果的なソリューションを提供する。
観察の結果,我々のフレームワークは多種多様なタスクのための多目的演算子として機能することがわかった。
さまざまなGNNフレームワークに統合することができ、パフォーマンスを詳細に向上し、最適なネットワーク深さを選択するための説明可能なアプローチを提供する。
論文 参考訳(メタデータ) (2024-06-18T12:16:00Z) - Generation is better than Modification: Combating High Class Homophily Variance in Graph Anomaly Detection [51.11833609431406]
異なるクラス間のホモフィリー分布の差は、ホモフィリックグラフやヘテロフィリックグラフよりも著しく大きい。
我々は、この現象を定量的に記述した、クラスホモフィリーバリアンスと呼ばれる新しい計量を導入する。
その影響を軽減するために,ホモフィリーエッジ生成グラフニューラルネットワーク(HedGe)と呼ばれる新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2024-03-15T14:26:53Z) - Discovering Invariant Neighborhood Patterns for Heterophilic Graphs [32.315495035666636]
Invariant Neighborhood Pattern Learning (INPL) を提案する。
我々は,INPLが非親和性グラフ上での学習において,最先端の性能を達成できることを実証した。
論文 参考訳(メタデータ) (2024-03-15T02:25:45Z) - Demystifying Structural Disparity in Graph Neural Networks: Can One Size
Fit All? [61.35457647107439]
ほとんどの実世界のホモフィルグラフとヘテロフィルグラフは、ホモフィルグラフとヘテロフィルグラフの両方の構造パターンの混合ノードから構成される。
ノード分類におけるグラフニューラルネットワーク (GNN) は, 一般にホモ親和性ノード上で良好に機能することを示す。
次に、GNNに対する厳密で非I.d PAC-Bayesian一般化を提案し、性能格差の理由を明らかにした。
論文 参考訳(メタデータ) (2023-06-02T07:46:20Z) - RAW-GNN: RAndom Walk Aggregation based Graph Neural Network [48.139599737263445]
本稿では,新しいアグリゲーション機構を導入し,RAndom Walk Aggregation-based Graph Neural Network(RAW-GNN)法を提案する。
提案手法は,広義のランダムウォークサーチを用いて,ホモフィリー情報と深さ優先の探索を行い,ヘテロフィリー情報を収集する。
従来の地区をパスベースの地区に置き換え、リカレントニューラルネットワークに基づく新しい経路ベースのアグリゲータを導入する。
論文 参考訳(メタデータ) (2022-06-28T12:19:01Z) - Powerful Graph Convolutioal Networks with Adaptive Propagation Mechanism
for Homophily and Heterophily [38.50800951799888]
グラフ畳み込みネットワーク(GCN)は、グラフ構造化データ処理において大きな影響力を持つため、様々な分野に広く応用されている。
既存の方法は、主に高次近傍を集約したり、即時表現を結合することでヘテロフィリーを扱う。
本稿では, ホモフィリーやヘテロフィリーに応じて自動的に伝播・凝集過程を変更できる新しい伝播機構を提案する。
論文 参考訳(メタデータ) (2021-12-27T08:19:23Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
グラフニューラルネットワーク(GNN)は、多数のグラフベースの機械学習タスクに適した学習表現において大きな進歩を見せている。
GNNはホモフィリーな仮定によりうまく機能し、異種ノードが接続する異種グラフへの一般化に失敗したと広く信じられている。
最近の研究は、このような不均一な制限を克服する新しいアーキテクチャを設計し、ベースライン性能の低さと、この概念の証拠として、いくつかの異種グラフベンチマークデータセットに対するアーキテクチャの改善を引用している。
我々の実験では、標準グラフ畳み込みネットワーク(GCN)が実際よりも優れた性能を実現できることを実証的に見出した。
論文 参考訳(メタデータ) (2021-06-11T02:44:00Z) - Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph
Convolutional Neural Networks [33.25212467404069]
理論的にはヘテロフィリーと過平滑化の関係を特徴づける。
我々は、署名メッセージと学習度補正を組み込むことで、隣人の特徴と度合いの相違に対処するモデルを設計する。
9つの実ネットワークに関する実験により,本モデルがヘテロフィリー条件下での最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2021-02-12T11:52:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。