論文の概要: The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs
- arxiv url: http://arxiv.org/abs/2406.12539v1
- Date: Tue, 18 Jun 2024 12:16:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 19:17:37.189239
- Title: The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs
- Title(参考訳): 好熱性スノーフレーク仮説:好熱性グラフのためのGNNの訓練と強化
- Authors: Kun Wang, Guibin Zhang, Xinnan Zhang, Junfeng Fang, Xun Wu, Guohao Li, Shirui Pan, Wei Huang, Yuxuan Liang,
- Abstract要約: ヘテロフィリー・スノーフレーク仮説を導入し、ヘテロ親和性グラフの研究をガイドし、促進するための効果的なソリューションを提供する。
観察の結果,我々のフレームワークは多種多様なタスクのための多目的演算子として機能することがわかった。
さまざまなGNNフレームワークに統合することができ、パフォーマンスを詳細に向上し、最適なネットワーク深さを選択するための説明可能なアプローチを提供する。
- 参考スコア(独自算出の注目度): 59.03660013787925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have become pivotal tools for a range of graph-based learning tasks. Notably, most current GNN architectures operate under the assumption of homophily, whether explicitly or implicitly. While this underlying assumption is frequently adopted, it is not universally applicable, which can result in potential shortcomings in learning effectiveness. In this paper, \textbf{for the first time}, we transfer the prevailing concept of ``one node one receptive field" to the heterophilic graph. By constructing a proxy label predictor, we enable each node to possess a latent prediction distribution, which assists connected nodes in determining whether they should aggregate their associated neighbors. Ultimately, every node can have its own unique aggregation hop and pattern, much like each snowflake is unique and possesses its own characteristics. Based on observations, we innovatively introduce the Heterophily Snowflake Hypothesis and provide an effective solution to guide and facilitate research on heterophilic graphs and beyond. We conduct comprehensive experiments including (1) main results on 10 graphs with varying heterophily ratios across 10 backbones; (2) scalability on various deep GNN backbones (SGC, JKNet, etc.) across various large number of layers (2,4,6,8,16,32 layers); (3) comparison with conventional snowflake hypothesis; (4) efficiency comparison with existing graph pruning algorithms. Our observations show that our framework acts as a versatile operator for diverse tasks. It can be integrated into various GNN frameworks, boosting performance in-depth and offering an explainable approach to choosing the optimal network depth. The source code is available at \url{https://github.com/bingreeky/HeteroSnoH}.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、さまざまなグラフベースの学習タスクにおいて重要なツールとなっている。
特に、現在のGNNアーキテクチャのほとんどは、明示的にも暗黙的にも、ホモフィリーの仮定の下で動作している。
この前提は頻繁に採用されているが、一般には適用されないため、学習効率の潜在的な欠点が生じる可能性がある。
本稿では、初めてtextbf{for the first time, we transfer the prevailing concept of ``one node one receptive field' to the heterophilic graph。
プロキシラベル予測器を構築することにより、各ノードが潜在予測分布を保持でき、接続ノードが関連する隣接ノードを集約すべきかどうかを判断するのを支援する。
最終的に、各ノードは独自のアグリゲーションホップとパターンを持つことができる。
本稿では, ヘテロフィリー雪炎仮説を革新的に導入し, ヘテロフィリックグラフなどの研究をガイドし, 促進する有効なソリューションを提供する。
筆者らは,(1)10個の背骨に異なるヘテロフィリー比を持つ10個のグラフの主実験,(2)多数の層(2,4,6,8,16,32層)にわたる各種深部GNNバックボーン(SGC,JKNetなど)のスケーラビリティ,(3)従来の雪片仮説との比較,(4)既存のグラフプルーニングアルゴリズムとの効率比較など,総合的な実験を行った。
観察の結果,我々のフレームワークは多種多様なタスクのための多目的演算子として機能することがわかった。
さまざまなGNNフレームワークに統合することができ、パフォーマンスを詳細に向上し、最適なネットワーク深さを選択するための説明可能なアプローチを提供する。
ソースコードは \url{https://github.com/bingreeky/HeteroSnoH} で公開されている。
関連論文リスト
- Learning Personalized Scoping for Graph Neural Networks under Heterophily [3.475704621679017]
異種ノードが接続する傾向がある不テロ親和性グラフは、グラフニューラルネットワーク(GNN)に挑戦する
我々は、ノード分類におけるGNN過度適合を克服する、個別のスコープ分類問題としてパーソナライズされたスコーピングを形式化する。
本稿では,GNN推論のみに参加する軽量なアプローチであるAdaptive Scope (AS)を提案する。
論文 参考訳(メタデータ) (2024-09-11T04:13:39Z) - The Snowflake Hypothesis: Training Deep GNN with One Node One Receptive
field [39.679151680622375]
一つのノード、一つの受容場の概念を支える新しいパラダイムである「雪の結晶仮説」を紹介します。
最も単純な勾配とノードレベルの余弦距離を、各ノードの集約深さを調節する指針として採用する。
観測結果は,我々の仮説がタスクの普遍演算子として機能できることを実証した。
論文 参考訳(メタデータ) (2023-08-19T15:21:12Z) - Demystifying Structural Disparity in Graph Neural Networks: Can One Size
Fit All? [61.35457647107439]
ほとんどの実世界のホモフィルグラフとヘテロフィルグラフは、ホモフィルグラフとヘテロフィルグラフの両方の構造パターンの混合ノードから構成される。
ノード分類におけるグラフニューラルネットワーク (GNN) は, 一般にホモ親和性ノード上で良好に機能することを示す。
次に、GNNに対する厳密で非I.d PAC-Bayesian一般化を提案し、性能格差の理由を明らかにした。
論文 参考訳(メタデータ) (2023-06-02T07:46:20Z) - ES-GNN: Generalizing Graph Neural Networks Beyond Homophily with Edge Splitting [32.69196871253339]
本稿では,学習タスクに関係のないグラフエッジを適応的に識別する新しいエッジ分割GNN(ES-GNN)フレームワークを提案する。
本稿では,ES-GNNを非交叉グラフ記述問題の解とみなすことができることを示す。
論文 参考訳(メタデータ) (2022-05-27T01:29:03Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
我々はフォン・ノイマンエントロピーに基づく新しい計量を提案し、GNNのヘテロフィリー問題を再検討する。
また、異種データセット上でのほとんどのGNNの性能を高めるために、Conv-Agnostic GNNフレームワーク(CAGNN)を提案する。
論文 参考訳(メタデータ) (2022-03-19T14:26:43Z) - GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both
Homophily and Heterophily [24.742449127169586]
グラフニューラルネットワーク(GNN)は、さまざまなグラフベースの機械学習タスクで広く使用されている。
ノードレベルのタスクでは、GNNはグラフのホモフィリーな性質をモデル化する強力な力を持つ。
両カーネルの特徴変換と選択ゲートに基づく新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2021-10-29T13:44:09Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
グラフニューラルネットワーク(GNN)は、多数のグラフベースの機械学習タスクに適した学習表現において大きな進歩を見せている。
GNNはホモフィリーな仮定によりうまく機能し、異種ノードが接続する異種グラフへの一般化に失敗したと広く信じられている。
最近の研究は、このような不均一な制限を克服する新しいアーキテクチャを設計し、ベースライン性能の低さと、この概念の証拠として、いくつかの異種グラフベンチマークデータセットに対するアーキテクチャの改善を引用している。
我々の実験では、標準グラフ畳み込みネットワーク(GCN)が実際よりも優れた性能を実現できることを実証的に見出した。
論文 参考訳(メタデータ) (2021-06-11T02:44:00Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Towards Deeper Graph Neural Networks with Differentiable Group
Normalization [61.20639338417576]
グラフニューラルネットワーク(GNN)は、隣接するノードを集約することでノードの表現を学習する。
オーバースムーシングは、レイヤーの数が増えるにつれてGNNのパフォーマンスが制限される重要な問題のひとつです。
2つのオーバースムースなメトリクスと新しいテクニック、すなわち微分可能群正規化(DGN)を導入する。
論文 参考訳(メタデータ) (2020-06-12T07:18:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。