Heterophilous Distribution Propagation for Graph Neural Networks
- URL: http://arxiv.org/abs/2405.20640v1
- Date: Fri, 31 May 2024 06:40:56 GMT
- Title: Heterophilous Distribution Propagation for Graph Neural Networks
- Authors: Zhuonan Zheng, Sheng Zhou, Hongjia Xu, Ming Gu, Yilun Xu, Ao Li, Yuhong Li, Jingjun Gu, Jiajun Bu,
- Abstract summary: We propose heterophilous distribution propagation (HDP) for graph neural networks.
Instead of aggregating information from all neighborhoods, HDP adaptively separates the neighbors into homophilous and heterphilous parts.
We conduct extensive experiments on 9 benchmark datasets with different levels of homophily.
- Score: 23.897535976924722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have achieved remarkable success in various graph mining tasks by aggregating information from neighborhoods for representation learning. The success relies on the homophily assumption that nearby nodes exhibit similar behaviors, while it may be violated in many real-world graphs. Recently, heterophilous graph neural networks (HeterGNNs) have attracted increasing attention by modifying the neural message passing schema for heterophilous neighborhoods. However, they suffer from insufficient neighborhood partition and heterophily modeling, both of which are critical but challenging to break through. To tackle these challenges, in this paper, we propose heterophilous distribution propagation (HDP) for graph neural networks. Instead of aggregating information from all neighborhoods, HDP adaptively separates the neighbors into homophilous and heterphilous parts based on the pseudo assignments during training. The heterophilous neighborhood distribution is learned with orthogonality-oriented constraint via a trusted prototype contrastive learning paradigm. Both the homophilous and heterophilous patterns are propagated with a novel semantic-aware message passing mechanism. We conduct extensive experiments on 9 benchmark datasets with different levels of homophily. Experimental results show that our method outperforms representative baselines on heterophilous datasets.
Related papers
- The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
Homophily principle, ie nodes with the same labels or similar attributes are more likely to be connected.
Recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory.
arXiv Detail & Related papers (2024-07-12T18:04:32Z) - The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs [59.03660013787925]
We introduce the Heterophily Snowflake Hypothesis and provide an effective solution to guide and facilitate research on heterophilic graphs.
Our observations show that our framework acts as a versatile operator for diverse tasks.
It can be integrated into various GNN frameworks, boosting performance in-depth and offering an explainable approach to choosing the optimal network depth.
arXiv Detail & Related papers (2024-06-18T12:16:00Z) - Generation is better than Modification: Combating High Class Homophily Variance in Graph Anomaly Detection [51.11833609431406]
Homophily distribution differences between different classes are significantly greater than those in homophilic and heterophilic graphs.
We introduce a new metric called Class Homophily Variance, which quantitatively describes this phenomenon.
To mitigate its impact, we propose a novel GNN model named Homophily Edge Generation Graph Neural Network (HedGe)
arXiv Detail & Related papers (2024-03-15T14:26:53Z) - Discovering Invariant Neighborhood Patterns for Heterophilic Graphs [32.315495035666636]
We propose a novel Invariant Neighborhood Pattern Learning (INPL) to alleviate the distribution shifts problem on non-homophilous graphs.
We show that INPL could achieve state-of-the-art performance for learning on large non-homophilous graphs.
arXiv Detail & Related papers (2024-03-15T02:25:45Z) - Demystifying Structural Disparity in Graph Neural Networks: Can One Size
Fit All? [61.35457647107439]
Most real-world homophilic and heterophilic graphs are comprised of a mixture of nodes in both homophilic and heterophilic structural patterns.
We provide evidence that Graph Neural Networks(GNNs) on node classification typically perform admirably on homophilic nodes.
We then propose a rigorous, non-i.i.d PAC-Bayesian generalization bound for GNNs, revealing reasons for the performance disparity.
arXiv Detail & Related papers (2023-06-02T07:46:20Z) - RAW-GNN: RAndom Walk Aggregation based Graph Neural Network [48.139599737263445]
We introduce a novel aggregation mechanism and develop a RAndom Walk Aggregation-based Graph Neural Network (called RAW-GNN) method.
The new method utilizes breadth-first random walk search to capture homophily information and depth-first search to collect heterophily information.
It replaces the conventional neighborhoods with path-based neighborhoods and introduces a new path-based aggregator based on Recurrent Neural Networks.
arXiv Detail & Related papers (2022-06-28T12:19:01Z) - Powerful Graph Convolutioal Networks with Adaptive Propagation Mechanism
for Homophily and Heterophily [38.50800951799888]
Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data.
Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations.
This paper proposes a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily.
arXiv Detail & Related papers (2021-12-27T08:19:23Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
Graph neural networks (GNNs) have shown great prowess in learning representations suitable for numerous graph-based machine learning tasks.
GNNs are widely believed to work well due to the homophily assumption ("like attracts like"), and fail to generalize to heterophilous graphs where dissimilar nodes connect.
Recent works design new architectures to overcome such heterophily-related limitations, citing poor baseline performance and new architecture improvements on a few heterophilous graph benchmark datasets as evidence for this notion.
In our experiments, we empirically find that standard graph convolutional networks (GCNs) can actually achieve better performance than
arXiv Detail & Related papers (2021-06-11T02:44:00Z) - Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph
Convolutional Neural Networks [33.25212467404069]
We theoretically characterize the connections between heterophily and oversmoothing.
We design a model that addresses the discrepancy in features and degrees between neighbors by incorporating signed messages and learned degree corrections.
Our experiments on 9 real networks show that our model achieves state-of-the-art performance under heterophily.
arXiv Detail & Related papers (2021-02-12T11:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.