LIBER: Lifelong User Behavior Modeling Based on Large Language Models
- URL: http://arxiv.org/abs/2411.14713v1
- Date: Fri, 22 Nov 2024 03:43:41 GMT
- Title: LIBER: Lifelong User Behavior Modeling Based on Large Language Models
- Authors: Chenxu Zhu, Shigang Quan, Bo Chen, Jianghao Lin, Xiaoling Cai, Hong Zhu, Xiangyang Li, Yunjia Xi, Weinan Zhang, Ruiming Tang,
- Abstract summary: We propose Lifelong User Behavior Modeling (LIBER) based on large language models.
LIBER has been deployed on Huawei's music recommendation service and achieved substantial improvements in users' play count and play time by 3.01% and 7.69%.
- Score: 42.045535303737694
- License:
- Abstract: CTR prediction plays a vital role in recommender systems. Recently, large language models (LLMs) have been applied in recommender systems due to their emergence abilities. While leveraging semantic information from LLMs has shown some improvements in the performance of recommender systems, two notable limitations persist in these studies. First, LLM-enhanced recommender systems encounter challenges in extracting valuable information from lifelong user behavior sequences within textual contexts for recommendation tasks. Second, the inherent variability in human behaviors leads to a constant stream of new behaviors and irregularly fluctuating user interests. This characteristic imposes two significant challenges on existing models. On the one hand, it presents difficulties for LLMs in effectively capturing the dynamic shifts in user interests within these sequences, and on the other hand, there exists the issue of substantial computational overhead if the LLMs necessitate recurrent calls upon each update to the user sequences. In this work, we propose Lifelong User Behavior Modeling (LIBER) based on large language models, which includes three modules: (1) User Behavior Streaming Partition (UBSP), (2) User Interest Learning (UIL), and (3) User Interest Fusion (UIF). Initially, UBSP is employed to condense lengthy user behavior sequences into shorter partitions in an incremental paradigm, facilitating more efficient processing. Subsequently, UIL leverages LLMs in a cascading way to infer insights from these partitions. Finally, UIF integrates the textual outputs generated by the aforementioned processes to construct a comprehensive representation, which can be incorporated by any recommendation model to enhance performance. LIBER has been deployed on Huawei's music recommendation service and achieved substantial improvements in users' play count and play time by 3.01% and 7.69%.
Related papers
- LLM-assisted Explicit and Implicit Multi-interest Learning Framework for Sequential Recommendation [50.98046887582194]
We propose an explicit and implicit multi-interest learning framework to model user interests on two levels: behavior and semantics.
The proposed EIMF framework effectively and efficiently combines small models with LLM to improve the accuracy of multi-interest modeling.
arXiv Detail & Related papers (2024-11-14T13:00:23Z) - Harnessing Multimodal Large Language Models for Multimodal Sequential Recommendation [21.281471662696372]
We propose the Multimodal Large Language Model-enhanced Multimodaln Sequential Recommendation (MLLM-MSR) model.
To capture the dynamic user preference, we design a two-stage user preference summarization method.
We then employ a recurrent user preference summarization generation paradigm to capture the dynamic changes in user preferences.
arXiv Detail & Related papers (2024-08-19T04:44:32Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
Sequential recommender systems (SRS) predict the next items that users may prefer based on user historical interaction sequences.
Inspired by the rise of large language models (LLMs) in various AI applications, there is a surge of work on LLM-based SRS.
We propose DARec, a sequential recommendation model built on top of coarse-grained adaption for capturing inter-item relations.
arXiv Detail & Related papers (2024-08-14T10:03:40Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
We focus on the field of large language models (LLMs) for recommendation.
We propose RecLoRA, which incorporates a Personalized LoRA module that maintains independent LoRAs for different users.
We also design a Few2Many Learning Strategy, using a conventional recommendation model as a lens to magnify small training spaces to full spaces.
arXiv Detail & Related papers (2024-08-07T04:20:28Z) - LLM-ESR: Large Language Models Enhancement for Long-tailed Sequential Recommendation [58.04939553630209]
In real-world systems, most users interact with only a handful of items, while the majority of items are seldom consumed.
These two issues, known as the long-tail user and long-tail item challenges, often pose difficulties for existing Sequential Recommendation systems.
We propose the Large Language Models Enhancement framework for Sequential Recommendation (LLM-ESR) to address these challenges.
arXiv Detail & Related papers (2024-05-31T07:24:42Z) - Breaking the Length Barrier: LLM-Enhanced CTR Prediction in Long Textual User Behaviors [25.086118164540974]
Large language models (LLMs) are used to improve the performance of click-through rate (CTR) prediction.
As user sequences grow longer, the current efficiency of LLMs is inadequate for training on billions of users and items.
We propose Behavior Aggregated Hierarchical (BAHE) to enhance the efficiency of LLM-based CTR modeling.
arXiv Detail & Related papers (2024-03-28T12:05:15Z) - User-LLM: Efficient LLM Contextualization with User Embeddings [23.226164112909643]
User-LLM is a novel framework that leverages user embeddings to directly contextualize large language models with user history interactions.
Our approach achieves significant efficiency gains by representing user timelines directly as embeddings, leading to substantial inference speedups of up to 78.1X.
arXiv Detail & Related papers (2024-02-21T08:03:27Z) - DRDT: Dynamic Reflection with Divergent Thinking for LLM-based
Sequential Recommendation [53.62727171363384]
We introduce a novel reasoning principle: Dynamic Reflection with Divergent Thinking.
Our methodology is dynamic reflection, a process that emulates human learning through probing, critiquing, and reflecting.
We evaluate our approach on three datasets using six pre-trained LLMs.
arXiv Detail & Related papers (2023-12-18T16:41:22Z) - Integrating Summarization and Retrieval for Enhanced Personalization via
Large Language Models [11.950478880423733]
Personalization is an essential factor in user experience with natural language processing (NLP) systems.
With the emergence of Large Language Models (LLMs), a key question is how to leverage these models to better personalize user experiences.
We propose a novel summary-augmented personalization with task-aware user summaries generated by LLMs.
arXiv Detail & Related papers (2023-10-30T23:40:41Z) - ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation [43.270424225285105]
We focus on adapting and empowering a pure large language model for zero-shot and few-shot recommendation tasks.
We propose Retrieval-enhanced Large Language models (ReLLa) for recommendation tasks in both zero-shot and few-shot settings.
arXiv Detail & Related papers (2023-08-22T02:25:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.