Improving Paratope and Epitope Prediction by Multi-Modal Contrastive Learning and Interaction Informativeness Estimation
- URL: http://arxiv.org/abs/2405.20668v1
- Date: Fri, 31 May 2024 08:09:36 GMT
- Title: Improving Paratope and Epitope Prediction by Multi-Modal Contrastive Learning and Interaction Informativeness Estimation
- Authors: Zhiwei Wang, Yongkang Wang, Wen Zhang,
- Abstract summary: We propose a novel Multi-modal contrastive learning and Interaction informativeness estimation-based method for Paratope and Epitope prediction, named MIPE.
MIPE implements a multi-modal contrastive learning strategy, which maximizes representations of binding and non-binding residues within each modality.
To exploit the spatial interaction information, MIPE also incorporates an interaction informativeness estimation that computes the estimated interaction matrices between antibodies and antigens.
- Score: 8.403085770216313
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately predicting antibody-antigen binding residues, i.e., paratopes and epitopes, is crucial in antibody design. However, existing methods solely focus on uni-modal data (either sequence or structure), disregarding the complementary information present in multi-modal data, and most methods predict paratopes and epitopes separately, overlooking their specific spatial interactions. In this paper, we propose a novel Multi-modal contrastive learning and Interaction informativeness estimation-based method for Paratope and Epitope prediction, named MIPE, by using both sequence and structure data of antibodies and antigens. MIPE implements a multi-modal contrastive learning strategy, which maximizes representations of binding and non-binding residues within each modality and meanwhile aligns uni-modal representations towards effective modal representations. To exploit the spatial interaction information, MIPE also incorporates an interaction informativeness estimation that computes the estimated interaction matrices between antibodies and antigens, thereby approximating them to the actual ones. Extensive experiments demonstrate the superiority of our method compared to baselines. Additionally, the ablation studies and visualizations demonstrate the superiority of MIPE owing to the better representations acquired through multi-modal contrastive learning and the interaction patterns comprehended by the interaction informativeness estimation.
Related papers
- MATE-Pred: Multimodal Attention-based TCR-Epitope interaction Predictor [1.933856957193398]
An accurate binding prediction between T-cell receptors ands contributes decisively to successful immunotherapy strategies.
Here, we propose a highly reliable novel method, MATE-Pred, that performs attention-based prediction of T-cell receptors and affinitys binding regimes.
The performance of MATE-Pred projects its potential application in drug discovery.
arXiv Detail & Related papers (2023-12-05T11:30:00Z) - Re-mine, Learn and Reason: Exploring the Cross-modal Semantic
Correlations for Language-guided HOI detection [57.13665112065285]
Human-Object Interaction (HOI) detection is a challenging computer vision task.
We present a framework that enhances HOI detection by incorporating structured text knowledge.
arXiv Detail & Related papers (2023-07-25T14:20:52Z) - Multimodal Relation Extraction with Cross-Modal Retrieval and Synthesis [89.04041100520881]
This research proposes to retrieve textual and visual evidence based on the object, sentence, and whole image.
We develop a novel approach to synthesize the object-level, image-level, and sentence-level information for better reasoning between the same and different modalities.
arXiv Detail & Related papers (2023-05-25T15:26:13Z) - Quantifying & Modeling Multimodal Interactions: An Information
Decomposition Framework [89.8609061423685]
We propose an information-theoretic approach to quantify the degree of redundancy, uniqueness, and synergy relating input modalities with an output task.
To validate PID estimation, we conduct extensive experiments on both synthetic datasets where the PID is known and on large-scale multimodal benchmarks.
We demonstrate their usefulness in (1) quantifying interactions within multimodal datasets, (2) quantifying interactions captured by multimodal models, (3) principled approaches for model selection, and (4) three real-world case studies.
arXiv Detail & Related papers (2023-02-23T18:59:05Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - Antibody Representation Learning for Drug Discovery [7.291511531280898]
We present results on a novel SARS-CoV-2 antibody binding dataset and an additional benchmark dataset.
We compare three classes of models: conventional statistical sequence models, supervised learning on each dataset independently, and fine-tuning an antibody specific pre-trained language model.
Experimental results suggest that self-supervised pretraining of feature representation consistently offers significant improvement in over previous approaches.
arXiv Detail & Related papers (2022-10-05T13:48:41Z) - Improving Adversarial Robustness via Mutual Information Estimation [144.33170440878519]
Deep neural networks (DNNs) are found to be vulnerable to adversarial noise.
In this paper, we investigate the dependence between outputs of the target model and input adversarial samples from the perspective of information theory.
We propose to enhance the adversarial robustness by maximizing the natural MI and minimizing the adversarial MI during the training process.
arXiv Detail & Related papers (2022-07-25T13:45:11Z) - Associative Learning Mechanism for Drug-Target Interaction Prediction [6.107658437700639]
Drug-target affinity (DTA) represents the strength of drug-target interaction (DTI)
Traditional methods lack the interpretability of the DTA prediction process.
This paper proposes a DTA prediction method with interactive learning and an autoencoder mechanism.
arXiv Detail & Related papers (2022-05-24T14:25:28Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Drug-Target Interaction Prediction via an Ensemble of Weighted Nearest
Neighbors with Interaction Recovery [5.8683934849211745]
Drug-target interactions are predicted via structure-based drug similarities and sequence-based target protein similarities.
Most existing similarity-based methods follow the transductive setting.
A large amount of missing interactions in current DTI datasets hinders most DTI prediction methods.
We propose a new method denoted as Weighted k Nearest Neighbor with Interaction Recovery (WkNNIR)
arXiv Detail & Related papers (2020-12-22T19:54:18Z) - Learning Inter-Modal Correspondence and Phenotypes from Multi-Modal
Electronic Health Records [15.658012300789148]
We propose cHITF to infer the correspondence between multiple modalities jointly with the phenotype discovery.
Experiments conducted on the real-world MIMIC-III dataset demonstrate that cHITF effectively infers clinically meaningful inter-modal correspondence.
arXiv Detail & Related papers (2020-11-12T10:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.