論文の概要: Revisiting Mutual Information Maximization for Generalized Category Discovery
- arxiv url: http://arxiv.org/abs/2405.20711v1
- Date: Fri, 31 May 2024 09:07:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 14:57:18.179104
- Title: Revisiting Mutual Information Maximization for Generalized Category Discovery
- Title(参考訳): 一般化カテゴリー発見のための相互情報の最大化の再検討
- Authors: Zhaorui Tan, Chengrui Zhang, Xi Yang, Jie Sun, Kaizhu Huang,
- Abstract要約: 本稿では,情報カテゴリのレンズ(InfoMax)による一般カテゴリー発見の課題を再考する。
我々は、新しいInfoMaxベースの正規化パラメトリックInfoMax(RPIM)を提案する。
RPIMは未知のクラスに関するパフォーマンスを大幅に改善し、最先端の手法を平均マージン3.5%上回った。
- 参考スコア(独自算出の注目度): 18.70496014940795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalized category discovery presents a challenge in a realistic scenario, which requires the model's generalization ability to recognize unlabeled samples from known and unknown categories. This paper revisits the challenge of generalized category discovery through the lens of information maximization (InfoMax) with a probabilistic parametric classifier. Our findings reveal that ensuring independence between known and unknown classes while concurrently assuming a uniform probability distribution across all classes, yields an enlarged margin among known and unknown classes that promotes the model's performance. To achieve the aforementioned independence, we propose a novel InfoMax-based method, Regularized Parametric InfoMax (RPIM), which adopts pseudo labels to supervise unlabeled samples during InfoMax, while proposing a regularization to ensure the quality of the pseudo labels. Additionally, we introduce novel semantic-bias transformation to refine the features from the pre-trained model instead of direct fine-tuning to rescue the computational costs. Extensive experiments on six benchmark datasets validate the effectiveness of our method. RPIM significantly improves the performance regarding unknown classes, surpassing the state-of-the-art method by an average margin of 3.5%.
- Abstract(参考訳): 一般化されたカテゴリ発見は、モデルが未知のカテゴリからラベルのないサンプルを認識できる一般化能力を必要とする、現実的なシナリオにおける課題を示す。
本稿では,確率的パラメトリック分類器を用いた情報最大化(InfoMax)のレンズによる一般化されたカテゴリ発見の課題を再考する。
その結果,すべてのクラスに一様確率分布を仮定しながら,未知クラス間の独立性を確保することで,モデルの性能を高める未知クラス間のマージンを増大させることがわかった。
上記の独立性を実現するために,新しいInfoMax方式であるRegularized Parametric InfoMax (RPIM)を提案する。
さらに, 計算コストの削減のために, 直接微調整ではなく, 事前学習モデルから特徴を洗練するために, セマンティックバイアス変換を導入する。
6つのベンチマークデータセットの大規模な実験により,本手法の有効性が検証された。
RPIMは未知のクラスに関するパフォーマンスを大幅に改善し、最先端の手法を平均マージン3.5%上回った。
関連論文リスト
- Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
半教師付きマルチラベル学習(SSMLL)は、正確なマルチラベルアノテーションを収集するコストを削減するために、ラベルのないデータを活用する強力なフレームワークである。
半教師付き学習とは異なり、インスタンスに含まれる複数のセマンティクスのため、SSMLLの擬似ラベルとして最も確率の高いラベルを選択することはできない。
本稿では,高品質な擬似ラベルを生成するための二重パースペクティブ手法を提案する。
論文 参考訳(メタデータ) (2024-07-26T09:33:53Z) - Memory Consistency Guided Divide-and-Conquer Learning for Generalized
Category Discovery [56.172872410834664]
一般カテゴリー発見(GCD)は、半教師付き学習のより現実的で挑戦的な設定に対処することを目的としている。
メモリ一貫性を誘導する分枝・分枝学習フレームワーク(MCDL)を提案する。
本手法は,画像認識の目に見えるクラスと見えないクラスの両方において,最先端のモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-24T09:39:45Z) - Anomaly Detection Under Uncertainty Using Distributionally Robust
Optimization Approach [0.9217021281095907]
異常検出は、大多数のパターンに従わないデータポイントを見つける問題として定義される。
1クラスのサポートベクトルマシン(SVM)メソッドは、通常のデータポイントと異常を区別するための決定境界を見つけることを目的としている。
誤分類の確率が低い分布的に頑健な確率制約モデルを提案する。
論文 参考訳(メタデータ) (2023-12-03T06:13:22Z) - Enhancing Cross-Dataset Performance of Distracted Driving Detection With
Score-Softmax Classifier [7.302402275736439]
ディープニューラルネットワークは、車内ドライバのリアルタイム監視を可能にし、気晴らし、疲労、潜在的な危険のタイムリーな予測を容易にする。
最近の研究では、オーバーフィッティングによる信頼性の低いクロスデータセットのエンドツーエンドドライバの動作認識が明らかにされている。
Score-Softmax分類器を導入し、クラス間独立性とクラス内不確実性を高めることでこの問題に対処する。
論文 参考訳(メタデータ) (2023-10-08T15:28:01Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
カテゴリーシフト(DGCS)下における領域一般化の実践的問題について検討する。
未知のクラスサンプルを同時に検出し、ターゲットドメイン内の既知のクラスサンプルを分類することを目的としている。
従来のDGと比較すると,1)ソースクラスのみを用いたトレーニングにおいて,未知の概念を学習する方法,2)ソーストレーニングされたモデルを未知の環境に適応する方法,の2つの新しい課題に直面している。
論文 参考訳(メタデータ) (2023-10-07T07:53:12Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
そこで我々は,PAC-Bayesリスク認定パラダイム内で,グラフ上のメトリックデータを分類するための新しい深層予測器のクラスを提案する。
PAC-Bayesの最近の文献とデータに依存した先行研究に基づいて、この手法は仮説空間上の後続分布の学習を可能にする。
論文 参考訳(メタデータ) (2022-01-26T19:59:14Z) - Open Set Recognition with Conditional Probabilistic Generative Models [51.40872765917125]
オープンセット認識のための条件付き確率生成モデル(CPGM)を提案する。
CPGMは未知のサンプルを検出できるが、異なる潜在特徴を条件付きガウス分布に近似させることで、既知のクラスを分類できる。
複数のベンチマークデータセットの実験結果から,提案手法がベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2020-08-12T06:23:49Z) - Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier [68.38233199030908]
ロングテール認識は、現実世界のシナリオにおける自然な非一様分散データに取り組む。
モダンは人口密度の高いクラスではうまく機能するが、そのパフォーマンスはテールクラスでは著しく低下する。
Deep-RTCは、リアリズムと階層的予測を組み合わせたロングテール問題の新しい解法として提案されている。
論文 参考訳(メタデータ) (2020-07-20T05:57:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。