論文の概要: Language Augmentation in CLIP for Improved Anatomy Detection on Multi-modal Medical Images
- arxiv url: http://arxiv.org/abs/2405.20735v1
- Date: Fri, 31 May 2024 09:59:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 14:47:24.350730
- Title: Language Augmentation in CLIP for Improved Anatomy Detection on Multi-modal Medical Images
- Title(参考訳): マルチモーダル医用画像におけるCLIPの言語拡張による解剖学的改善
- Authors: Mansi Kakkar, Dattesh Shanbhag, Chandan Aladahalli, Gurunath Reddy M,
- Abstract要約: ヴィジュアル言語モデルは、医療領域におけるマルチモーダル分類問題に挑戦するための強力なツールとして登場した。
既存の研究は、特定のモダリティや身体領域の臨床的記述に焦点を当てており、全身のマルチモーダル記述を提供するモデルにギャップを残している。
本稿では,マルチモーダルMRIおよびCT画像において,全身の標準化された体局と臓器のリストの自動生成により,このギャップに対処する。
- 参考スコア(独自算出の注目度): 1.4680035572775536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-language models have emerged as a powerful tool for previously challenging multi-modal classification problem in the medical domain. This development has led to the exploration of automated image description generation for multi-modal clinical scans, particularly for radiology report generation. Existing research has focused on clinical descriptions for specific modalities or body regions, leaving a gap for a model providing entire-body multi-modal descriptions. In this paper, we address this gap by automating the generation of standardized body station(s) and list of organ(s) across the whole body in multi-modal MR and CT radiological images. Leveraging the versatility of the Contrastive Language-Image Pre-training (CLIP), we refine and augment the existing approach through multiple experiments, including baseline model fine-tuning, adding station(s) as a superset for better correlation between organs, along with image and language augmentations. Our proposed approach demonstrates 47.6% performance improvement over baseline PubMedCLIP.
- Abstract(参考訳): ビジョン言語モデルは、これまで医療領域におけるマルチモーダル分類問題に挑戦する強力なツールとして登場した。
この開発により、マルチモーダルな臨床スキャンのための自動画像記述生成、特に放射線学レポート生成の探索に繋がった。
既存の研究は、特定のモダリティや身体領域の臨床的記述に焦点を当てており、全身のマルチモーダル記述を提供するモデルにギャップを残している。
本稿では,マルチモーダルMRIおよびCT画像において,全身の標準化された体局と臓器のリストの自動生成により,このギャップに対処する。
CLIP(Contrastive Language- Image Pre-Training)の汎用性を活用して,ベースラインモデルファインチューニング,ステーション(s)をスーパーセットとして追加し,臓器間の相関性を向上する。
提案手法は,ベースラインPubMedCLIPよりも47.6%の性能向上を示す。
関連論文リスト
- MoRE: Multi-Modal Contrastive Pre-training with Transformers on X-Rays, ECGs, and Diagnostic Report [4.340464264725625]
我々は,X線,心電図(ECG),放射線学・心臓医学報告を相乗的に組み合わせた,新しいマルチモーダルコントラスト事前学習フレームワークを提案する。
我々はLoRA-Peftを用いて、LLMにおけるトレーニング可能なパラメータを著しく削減し、視覚変換器(ViT)に最近の線形アテンション降下戦略を取り入れ、よりスムーズなアテンションを実現する。
我々の知る限り、我々はX線、心電図、放射線学・医学レポートをこの手法と組み合わせた統合モデルを提案している。
論文 参考訳(メタデータ) (2024-10-21T17:42:41Z) - MOSMOS: Multi-organ segmentation facilitated by medical report supervision [10.396987980136602]
マルチオーガンスーパービジョン(MOS)のための新しい事前学習・微調整フレームワークを提案する。
具体的には、まず、トレーニング前の段階で、医用画像とレポートのペアを合わせるために、グローバルコントラスト学習を導入する。
さらに,画像画素と臓器タグ間の意味的対応を暗黙的に学習するために,マルチラベル認識を活用する。
論文 参考訳(メタデータ) (2024-09-04T03:46:17Z) - CT-GLIP: 3D Grounded Language-Image Pretraining with CT Scans and Radiology Reports for Full-Body Scenarios [53.94122089629544]
我々は,CT-GLIP(Grounded Language- Image Pretraining with CT scans)を導入する。
本手法は,104臓器にわたる17,702症例を対象に,44,011例の臓器レベルの視覚テキストペアからなるマルチモーダルCTデータセットを用いて訓練し,自然言語を用いて臓器と異常をゼロショットで識別できることを実証した。
論文 参考訳(メタデータ) (2024-04-23T17:59:01Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
医用画像分割作業の不確実性、特にラター間変動性は重要な課題である。
この可変性は、自動セグメンテーションアルゴリズムの開発と評価に直接影響を及ぼす。
バイオメディカル画像量化チャレンジ(QUBIQ)における不確実性の定量化のベンチマーク結果を報告する。
論文 参考訳(メタデータ) (2024-03-19T17:57:24Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - VALD-MD: Visual Attribution via Latent Diffusion for Medical Diagnostics [0.0]
医用画像における視覚的属性は、医用画像の診断関連成分を明確にすることを目指している。
本稿では、潜在拡散モデルとドメイン固有大言語モデルを組み合わせた新しい生成的視覚属性手法を提案する。
結果として生じるシステムは、ゼロショット局所化疾患誘導を含む様々な潜在能力を示す。
論文 参考訳(メタデータ) (2024-01-02T19:51:49Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - A New Multimodal Medical Image Fusion based on Laplacian Autoencoder
with Channel Attention [3.1531360678320897]
ディープラーニングモデルは、非常に堅牢で正確なパフォーマンスでエンドツーエンドの画像融合を実現した。
ほとんどのDLベースの融合モデルは、学習可能なパラメータや計算量を最小限に抑えるために、入力画像上でダウンサンプリングを行う。
本稿では,ラープラシア・ガウス統合とアテンションプールを融合したマルチモーダル医用画像融合モデルを提案する。
論文 参考訳(メタデータ) (2023-10-18T11:29:53Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
我々は,会話型医療ビジョン言語モデルであるXrayGPTを紹介する。
胸部X線写真に関するオープンエンドの質問を分析し、答えることができる。
自由テキストラジオグラフィーレポートから217kの対話的かつ高品質な要約を生成する。
論文 参考訳(メタデータ) (2023-06-13T17:59:59Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。