論文の概要: MicarVLMoE: A Modern Gated Cross-Aligned Vision-Language Mixture of Experts Model for Medical Image Captioning and Report Generation
- arxiv url: http://arxiv.org/abs/2504.20343v1
- Date: Tue, 29 Apr 2025 01:26:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.709388
- Title: MicarVLMoE: A Modern Gated Cross-Aligned Vision-Language Mixture of Experts Model for Medical Image Captioning and Report Generation
- Title(参考訳): MicarVLMoE: 医用画像キャプチャーとレポート生成のためのエキスパートモデルの現代的拡張型視覚-言語混合
- Authors: Amaan Izhar, Nurul Japar, Norisma Idris, Ting Dang,
- Abstract要約: 医用画像報告は、放射線画像から構造化された臨床記述を生成することを目的としている。
そこで我々は, ゲート型クロスアライメント融合モデルであるMicarVLMoEを提案する。
我々は、MIRをCTスキャン、網膜イメージング、MRIスキャン、Grog pathology imageに拡張し、最先端の結果を報告する。
- 参考スコア(独自算出の注目度): 4.760537994346813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image reporting (MIR) aims to generate structured clinical descriptions from radiological images. Existing methods struggle with fine-grained feature extraction, multimodal alignment, and generalization across diverse imaging types, often relying on vanilla transformers and focusing primarily on chest X-rays. We propose MicarVLMoE, a vision-language mixture-of-experts model with gated cross-aligned fusion, designed to address these limitations. Our architecture includes: (i) a multiscale vision encoder (MSVE) for capturing anatomical details at varying resolutions, (ii) a multihead dual-branch latent attention (MDLA) module for vision-language alignment through latent bottleneck representations, and (iii) a modulated mixture-of-experts (MoE) decoder for adaptive expert specialization. We extend MIR to CT scans, retinal imaging, MRI scans, and gross pathology images, reporting state-of-the-art results on COVCTR, MMR, PGROSS, and ROCO datasets. Extensive experiments and ablations confirm improved clinical accuracy, cross-modal alignment, and model interpretability. Code is available at https://github.com/AI-14/micar-vl-moe.
- Abstract(参考訳): 医用画像報告(MIR)は、放射線画像から構造化された臨床記述を生成することを目的としている。
既存の方法は、細粒度の特徴抽出、マルチモーダルアライメント、および様々なイメージングタイプにわたる一般化に苦慮しており、しばしばバニラ変換器に依存し、主に胸部X線に焦点を当てている。
そこで我々は,これらの制約に対処するために,ゲート整合融合を用いた視覚言語混合実験モデルMicarVLMoEを提案する。
私たちのアーキテクチャは以下のとおりです。
(i)解剖学的詳細を様々な解像度で把握するためのマルチスケールビジョンエンコーダ(MSVE)
(II)潜在ボトルネック表現による視覚言語アライメントのためのマルチヘッドデュアルブランチラテントアテンション(MDLA)モジュール、及び
三 適応専門家専門化のための変調混合(MoE)デコーダ。
我々はMIRをCTスキャン、網膜イメージング、MRIスキャン、Grog pathology imageに拡張し、COVCTR、MMR、PGROSS、ROCOデータセットの最先端結果を報告する。
広範囲な実験と改善により、臨床精度、クロスモーダルアライメント、モデル解釈可能性が改善された。
コードはhttps://github.com/AI-14/micar-vl-moe.comから入手できる。
関連論文リスト
- RadIR: A Scalable Framework for Multi-Grained Medical Image Retrieval via Radiology Report Mining [48.21287619304126]
本稿では,複数の粒度で画像の類似度を決定するために,高密度ラジオロジーレポートを利用した新しい手法を提案する。
我々は、胸部X線用MIMIC-IRとCTスキャン用CTRATE-IRの2つの総合的な医用画像検索データセットを構築した。
RadIR-CXR と Model-ChestCT という2つの検索システムを開発し,従来の画像画像検索と画像レポート検索に優れた性能を示す。
論文 参考訳(メタデータ) (2025-03-06T17:43:03Z) - A Generative Framework for Bidirectional Image-Report Understanding in Chest Radiography [1.2289361708127877]
Multi-Stage Adaptive Vision-Language Tuning (MAViLT)は、視覚に基づく理解のためのマルチモーダル推論と生成を強化するために設計された新しいフレームワークである。
MAViLTは、臨床勾配重み付きトークン化プロセスと階層的な微調整戦略を取り入れており、正確な放射線学レポートを生成し、テキストから現実的なCXRを合成し、視覚に基づく臨床質問に答えることができる。
我々は、MIMIC-CXRとインディアナ大学CXRの2つのベンチマークデータセット上でMAViLTを評価し、すべてのタスクで最先端の結果を得る。
論文 参考訳(メタデータ) (2025-02-09T15:02:57Z) - MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
稀ながら臨床的に重要な画像モダリティのための医用画像分割モデルの訓練は、注釈付きデータの不足により困難である。
本稿では、生成モデルを利用してトレーニングデータを合成し、未表現のモダリティに対するセグメンテーションモデルを訓練する。
論文 参考訳(メタデータ) (2024-12-04T16:34:22Z) - MoRE: Multi-Modal Contrastive Pre-training with Transformers on X-Rays, ECGs, and Diagnostic Report [4.340464264725625]
我々は,X線,心電図(ECG),放射線学・心臓医学報告を相乗的に組み合わせた,新しいマルチモーダルコントラスト事前学習フレームワークを提案する。
我々はLoRA-Peftを用いて、LLMにおけるトレーニング可能なパラメータを著しく削減し、視覚変換器(ViT)に最近の線形アテンション降下戦略を取り入れ、よりスムーズなアテンションを実現する。
我々の知る限り、我々はX線、心電図、放射線学・医学レポートをこの手法と組み合わせた統合モデルを提案している。
論文 参考訳(メタデータ) (2024-10-21T17:42:41Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
様々な計測アンサンプパターンと画像解像度に頑健な統合MRI再構成モデルを提案する。
我々のモデルは、拡散法よりも600$times$高速な推論で、最先端CNN(End-to-End VarNet)の4dBでSSIMを11%改善し、PSNRを4dB改善する。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Advancing Medical Image Segmentation: Morphology-Driven Learning with Diffusion Transformer [4.672688418357066]
本稿では,雑音の存在下での頑健なセグメンテーションのためのトランスフォーマー拡散(DTS)モデルを提案する。
画像の形態的表現を解析する本モデルでは, 種々の医用画像モダリティにおいて, 従来のモデルよりも良好な結果が得られた。
論文 参考訳(メタデータ) (2024-08-01T07:35:54Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - VALD-MD: Visual Attribution via Latent Diffusion for Medical Diagnostics [0.0]
医用画像における視覚的属性は、医用画像の診断関連成分を明確にすることを目指している。
本稿では、潜在拡散モデルとドメイン固有大言語モデルを組み合わせた新しい生成的視覚属性手法を提案する。
結果として生じるシステムは、ゼロショット局所化疾患誘導を含む様々な潜在能力を示す。
論文 参考訳(メタデータ) (2024-01-02T19:51:49Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。