論文の概要: Analytic DAG Constraints for Differentiable DAG Learning
- arxiv url: http://arxiv.org/abs/2503.19218v1
- Date: Mon, 24 Mar 2025 23:51:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:52:09.827129
- Title: Analytic DAG Constraints for Differentiable DAG Learning
- Title(参考訳): 微分可能DAG学習のためのDAG制約の解析
- Authors: Zhen Zhang, Ignavier Ng, Dong Gong, Yuhang Liu, Mingming Gong, Biwei Huang, Kun Zhang, Anton van den Hengel, Javen Qinfeng Shi,
- Abstract要約: 解析関数とDAG制約の関連性を確立するための理論を開発する。
集合 $f(x) = c_0 + sum_i=1inftyc_ixi | forall i > 0, c_i > 0; r = lim_irightarrow inftyc_i/c_i+1 > 0$ から得られる解析関数は、有効な DAG 制約を定式化するために用いられる。
- 参考スコア(独自算出の注目度): 83.93320658222717
- License:
- Abstract: Recovering the underlying Directed Acyclic Graph (DAG) structures from observational data presents a formidable challenge, partly due to the combinatorial nature of the DAG-constrained optimization problem. Recently, researchers have identified gradient vanishing as one of the primary obstacles in differentiable DAG learning and have proposed several DAG constraints to mitigate this issue. By developing the necessary theory to establish a connection between analytic functions and DAG constraints, we demonstrate that analytic functions from the set $\{f(x) = c_0 + \sum_{i=1}^{\infty}c_ix^i | \forall i > 0, c_i > 0; r = \lim_{i\rightarrow \infty}c_{i}/c_{i+1} > 0\}$ can be employed to formulate effective DAG constraints. Furthermore, we establish that this set of functions is closed under several functional operators, including differentiation, summation, and multiplication. Consequently, these operators can be leveraged to create novel DAG constraints based on existing ones. Using these properties, we design a series of DAG constraints and develop an efficient algorithm to evaluate them. Experiments in various settings demonstrate that our DAG constraints outperform previous state-of-the-art comparators. Our implementation is available at https://github.com/zzhang1987/AnalyticDAGLearning.
- Abstract(参考訳): 観測データからDAG(Directed Acyclic Graph)構造を復元することは、DAG制約付き最適化問題の組合せ性のために、非常に難しい課題となる。
近年、微分可能DAG学習における主要な障害の一つとして勾配の消失が特定され、この問題を軽減するためにいくつかのDAG制約が提案されている。
解析関数とDAG制約の接続を確立するために必要な理論を開発することにより、集合 $\{f(x) = c_0 + \sum_{i=1}^{\infty}c_ix^i | \forall i > 0, c_i > 0; r = \lim_{i\rightarrow \infty}c_{i}/c_{i+1} > 0\}$ から解析関数を導出し、効果的な DAG 制約を定式化できることが示される。
さらに、この関数の集合は、微分、和、乗算を含むいくつかの機能作用素の下で閉じていることを確かめる。
したがって、これらの演算子は、既存の制約に基づいて新しいDAG制約を作成するために利用することができる。
これらの特性を用いて、一連のDAG制約を設計し、それらを評価するための効率的なアルゴリズムを開発する。
様々な環境での実験では、DAGの制約が従来の最先端のコンパレータよりも優れていることが示されています。
実装はhttps://github.com/zzhang 1987/AnalyticDAGLearning.comで公開しています。
関連論文リスト
- $ψ$DAG: Projected Stochastic Approximation Iteration for DAG Structure Learning [6.612096312467342]
Directed A Graphs (DAGs) の構造を学ぶことは、ノード数に応じてスケールする可能なグラフの巨大な検索空間のため、大きな課題となる。
近年の進歩は、微分可能指数関数性制約を取り入れた連続最適化タスクとしてこの問題を再定義している。
本稿では,SGD(Gradient Descent)に基づく最適化手法と統合した近似手法を用いて,DAGを学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-31T12:13:11Z) - Non-negative Weighted DAG Structure Learning [12.139158398361868]
本研究は,真DAGを夜間観測から学習する問題に対処する。
本稿では, ar を返すことが保証される手法に基づく DAG 回復アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-12T09:41:29Z) - Discovering Dynamic Causal Space for DAG Structure Learning [64.763763417533]
本稿では,DAG構造学習のための動的因果空間であるCASPERを提案する。
グラフ構造をスコア関数に統合し、因果空間における新しい尺度として、推定真理DAGと基底真理DAGの因果距離を忠実に反映する。
論文 参考訳(メタデータ) (2023-06-05T12:20:40Z) - Truncated Matrix Power Iteration for Differentiable DAG Learning [47.69479930501961]
本稿では,列ベースDAG制約を近似するために,効率的な乱数行列パワーを持つ新しいDAG学習法を提案する。
実験により,DAG学習法は,様々な設定で従来の最先端技術よりも優れていた。
論文 参考訳(メタデータ) (2022-08-30T23:56:12Z) - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery [97.79015388276483]
構造方程式モデル(SEM)は、有向非巡回グラフ(DAG)を介して表される因果関係を推論する効果的な枠組みである。
近年の進歩により、観測データからDAGの有効最大点推定が可能となった。
線形ガウス SEM を特徴付ける DAG 上の分布を推定するための変分フレームワークである BCD Nets を提案する。
論文 参考訳(メタデータ) (2021-12-06T03:35:21Z) - Multi-task Learning of Order-Consistent Causal Graphs [59.9575145128345]
我々は、$K関連ガウス非巡回グラフ(DAG)の発見問題を考える。
マルチタスク学習環境下では, 線形構造方程式モデルを学習するためのMLE ($l_1/l$-regularized maximum chance estimator) を提案する。
理論的には、関係するタスクにまたがるデータを活用することで、因果順序を復元する際のサンプルの複雑さをより高めることができることを示す。
論文 参考訳(メタデータ) (2021-11-03T22:10:18Z) - Learning Large DAGs by Combining Continuous Optimization and Feedback
Arc Set Heuristics [0.3553493344868413]
線形構造方程式の場合,DAGを学習するための2つのスケーラブルNPを提案する。
対象関数を最適化するために、制約のない勾配降下に基づくステップを交互に組み合わせてDAGを学習する。
この分離のおかげで、私たちのメソッドは何千もの変数を越えてスケールアップされます。
論文 参考訳(メタデータ) (2021-07-01T16:10:21Z) - DAGs with No Curl: An Efficient DAG Structure Learning Approach [62.885572432958504]
近年のDAG構造学習は連続的な非巡回性制約を伴う制約付き連続最適化問題として定式化されている。
本稿では,DAG空間の重み付き隣接行列を直接モデル化し,学習するための新しい学習フレームワークを提案する。
本手法は, 線形および一般化された構造方程式モデルにおいて, ベースラインDAG構造学習法よりも精度が高いが, 効率がよいことを示す。
論文 参考訳(メタデータ) (2021-06-14T07:11:36Z) - Multi-task Causal Learning with Gaussian Processes [17.205106391379026]
本稿では、因果モデルの有向非巡回グラフ(DAG)上に定義された一連の介入関数の相関構造を学習する問題について考察する。
本稿では,連続的な介入と異なる変数に対する実験による情報共有が可能な,最初のマルチタスク因果ガウス過程(GP)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-27T11:33:40Z) - On the Role of Sparsity and DAG Constraints for Learning Linear DAGs [16.97675762810828]
ガウス系および非ガウス系におけるDAGモデルの学習におけるスパーシリティとDAG制約の役割について検討した。
確率に基づくスコア関数を提案し, 基本真理DAGと同等のDAGを学習するためには, ソフト・スパシティとDAG制約を適用するだけでよいことを示す。
論文 参考訳(メタデータ) (2020-06-17T23:43:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。