論文の概要: Avoiding Pitfalls for Privacy Accounting of Subsampled Mechanisms under Composition
- arxiv url: http://arxiv.org/abs/2405.20769v1
- Date: Mon, 27 May 2024 20:30:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 14:37:39.512192
- Title: Avoiding Pitfalls for Privacy Accounting of Subsampled Mechanisms under Composition
- Title(参考訳): 構成下サブサンプリング機構のプライバシ会計における落とし穴回避
- Authors: Christian Janos Lebeda, Matthew Regehr, Gautam Kamath, Thomas Steinke,
- Abstract要約: 我々は、サブサンプルの差分秘密機構の構成に対する厳密なプライバシー保証の計算の問題を考える。
近年のアルゴリズムでは、プライバシーパラメータを任意の精度で数値計算できるが、慎重に適用する必要がある。
- 参考スコア(独自算出の注目度): 13.192083588571384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of computing tight privacy guarantees for the composition of subsampled differentially private mechanisms. Recent algorithms can numerically compute the privacy parameters to arbitrary precision but must be carefully applied. Our main contribution is to address two common points of confusion. First, some privacy accountants assume that the privacy guarantees for the composition of a subsampled mechanism are determined by self-composing the worst-case datasets for the uncomposed mechanism. We show that this is not true in general. Second, Poisson subsampling is sometimes assumed to have similar privacy guarantees compared to sampling without replacement. We show that the privacy guarantees may in fact differ significantly between the two sampling schemes. In particular, we give an example of hyperparameters that result in $\varepsilon \approx 1$ for Poisson subsampling and $\varepsilon > 10$ for sampling without replacement. This occurs for some parameters that could realistically be chosen for DP-SGD.
- Abstract(参考訳): 我々は、サブサンプルの差分秘密機構の構成に対する厳密なプライバシー保証の計算の問題を考える。
近年のアルゴリズムでは、プライバシーパラメータを任意の精度で数値計算できるが、慎重に適用する必要がある。
私たちの主な貢献は2つの共通点に対処することです。
まず、一部のプライバシー会計士は、サブサンプル機構の構成に関するプライバシー保証は、アンコンポジションメカニズムの最悪のデータセットを自己コンパイルすることによって決定されると仮定する。
これは一般には正しくないことを示す。
第2に、Poissonサブサンプリングは、リプレースなしでサンプリングするのと同じようなプライバシー保証を持つと仮定されることがある。
プライバシ保証が実際に2つのサンプリング方式と大きく異なる可能性があることを示す。
特に、ポアソン部分サンプリングに対して $\varepsilon \approx 1$ と、置換なしでサンプリングするために $\varepsilon > 10$ となるハイパーパラメータの例を示す。
これは、DP-SGDで現実的に選択できるいくつかのパラメータに対して発生する。
関連論文リスト
- How Private are DP-SGD Implementations? [61.19794019914523]
2種類のバッチサンプリングを使用する場合、プライバシ分析の間に大きなギャップがあることが示される。
その結果,2種類のバッチサンプリングでは,プライバシ分析の間に大きなギャップがあることが判明した。
論文 参考訳(メタデータ) (2024-03-26T13:02:43Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
インスタンスごとの差分プライバシー(pDP)やフィッシャー情報損失(FIL)といったデータ依存のプライバシ会計フレームワークは、固定されたトレーニングデータセット内の個人に対してきめ細かいプライバシー保証を提供する。
本稿では,データ依存会計下でのプライバシ保証を向上することを示すとともに,バウンドサポートによるガウス機構の簡単な修正を提案する。
論文 参考訳(メタデータ) (2024-03-07T21:22:07Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
推定検証リリース(EVR)と呼ばれる新しい差分プライバシーパラダイムを提案する。
EVRパラダイムは、まずメカニズムのプライバシパラメータを推定し、その保証を満たすかどうかを確認し、最後にクエリ出力を解放する。
我々の実証的な評価は、新たに提案されたEVRパラダイムが、プライバシ保護機械学習のユーティリティプライバシトレードオフを改善することを示している。
論文 参考訳(メタデータ) (2023-04-17T00:38:01Z) - Individual Privacy Accounting with Gaussian Differential Privacy [8.81666701090743]
個別のプライバシ会計は、分析に関わる各関係者に対して、差分プライバシー(DP)の損失を個別に制限することを可能にする。
個人のプライバシー損失を原則的に説明するためには、ランダム化機構の適応的な構成のためのプライバシー会計士が必要である。
論文 参考訳(メタデータ) (2022-09-30T17:19:40Z) - The Poisson binomial mechanism for secure and private federated learning [19.399122892615573]
本稿では,分散平均推定(DME)のための離散的差分プライバシー機構を導入し,フェデレーション学習と分析に応用する。
我々は、プライバシー保証の厳密な分析を行い、連続的なガウス機構と同じプライバシーと精度のトレードオフを達成することを示す。
論文 参考訳(メタデータ) (2022-07-09T05:46:28Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
DP-SGDで訓練されたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付ける。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
論文 参考訳(メタデータ) (2022-06-06T13:49:37Z) - Smoothed Differential Privacy [55.415581832037084]
微分プライバシー(DP)は、最悪のケース分析に基づいて広く受け入れられ、広く適用されているプライバシーの概念である。
本稿では, 祝賀されたスムーズな解析の背景にある最悪の平均ケースのアイデアに倣って, DPの自然な拡張を提案する。
サンプリング手順による離散的なメカニズムはDPが予測するよりもプライベートであるのに対して,サンプリング手順による連続的なメカニズムはスムーズなDP下では依然としてプライベートではないことが証明された。
論文 参考訳(メタデータ) (2021-07-04T06:55:45Z) - Covariance-Aware Private Mean Estimation Without Private Covariance Estimation [10.036088581191592]
2つのサンプル係数差分プライベート平均推定器を$d$-dimensional(sub)Gaussian分布に対して提案する。
我々の推定子は、$| tildemu - mu |_Sigma leq alpha$, where $| cdot |_Sigma$がマハラノビス距離であるような$tildemu$を出力します。
論文 参考訳(メタデータ) (2021-06-24T21:40:07Z) - Optimal Accounting of Differential Privacy via Characteristic Function [25.78065563380023]
本稿では,プライバシ・プロフィール,プライバシ・プロファイル,$f$-DP,PLDフォーマリズムなどの最近の進歩を,ある最悪のケースのプライバシ・ロスランダム変数の特徴関数(phi$-function)を介して統一することを提案する。
我々のアプローチは、Renyi DPのような自然適応的な構成を可能にし、PDDのような厳密なプライバシ会計を提供し、プライバシープロファイルや$f$-DPに変換できることが示されています。
論文 参考訳(メタデータ) (2021-06-16T06:13:23Z) - Learning with User-Level Privacy [61.62978104304273]
ユーザレベルの差分プライバシー制約下での学習課題を,アルゴリズムを用いて解析する。
個々のサンプルのプライバシーのみを保証するのではなく、ユーザレベルのdpはユーザの貢献全体を保護します。
プライバシコストが$tau$に比例した$K$適応的に選択されたクエリのシーケンスにプライベートに答えるアルゴリズムを導き出し、私たちが検討する学習タスクを解決するためにそれを適用します。
論文 参考訳(メタデータ) (2021-02-23T18:25:13Z) - Bounding, Concentrating, and Truncating: Unifying Privacy Loss
Composition for Data Analytics [2.614355818010333]
アナリストが純粋なDP、境界範囲(指数的なメカニズムなど)、集中的なDPメカニズムを任意の順序で選択できる場合、強いプライバシー損失バウンダリを提供する。
また、アナリストが純粋なDPと境界範囲のメカニズムをバッチで選択できる場合に適用される最適なプライバシー損失境界を提供する。
論文 参考訳(メタデータ) (2020-04-15T17:33:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。