論文の概要: Federated Learning with Blockchain-Enhanced Machine Unlearning: A Trustworthy Approach
- arxiv url: http://arxiv.org/abs/2405.20776v1
- Date: Mon, 27 May 2024 04:35:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 14:37:39.503984
- Title: Federated Learning with Blockchain-Enhanced Machine Unlearning: A Trustworthy Approach
- Title(参考訳): ブロックチェーンによる強化された機械学習によるフェデレーション学習 - 信頼できるアプローチ
- Authors: Xuhan Zuo, Minghao Wang, Tianqing Zhu, Lefeng Zhang, Shui Yu, Wanlei Zhou,
- Abstract要約: 我々は、ブロックチェーンをフェデレートされた学習と融合させるフレームワークを導入し、未学習の要求とアクションの不変記録を確実にする。
私たちの重要なコントリビューションは、アンラーニングプロセスの認証機構、データセキュリティとプライバシの強化、データ管理の最適化などです。
- 参考スコア(独自算出の注目度): 20.74679353443655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the growing need to comply with privacy regulations and respond to user data deletion requests, integrating machine unlearning into IoT-based federated learning has become imperative. Traditional unlearning methods, however, often lack verifiable mechanisms, leading to challenges in establishing trust. This paper delves into the innovative integration of blockchain technology with federated learning to surmount these obstacles. Blockchain fortifies the unlearning process through its inherent qualities of immutability, transparency, and robust security. It facilitates verifiable certification, harmonizes security with privacy, and sustains system efficiency. We introduce a framework that melds blockchain with federated learning, thereby ensuring an immutable record of unlearning requests and actions. This strategy not only bolsters the trustworthiness and integrity of the federated learning model but also adeptly addresses efficiency and security challenges typical in IoT environments. Our key contributions encompass a certification mechanism for the unlearning process, the enhancement of data security and privacy, and the optimization of data management to ensure system responsiveness in IoT scenarios.
- Abstract(参考訳): プライバシ規則に準拠し、ユーザのデータ削除要求に応答する必要性が高まっているため、マシンラーニングをIoTベースのフェデレーション学習に統合することは不可欠になっている。
しかし、従来の未学習の手法は検証可能なメカニズムを欠くことが多く、信頼を確立する上での課題に繋がる。
本稿では,これらの障害を克服するために,ブロックチェーン技術とフェデレーション学習の革新的な統合について検討する。
ブロックチェーンは、不変性、透明性、堅牢なセキュリティという固有の性質を通じて、未学習プロセスを強化します。
認証の検証を促進し、セキュリティとプライバシを調和させ、システムの効率を維持する。
我々は、ブロックチェーンをフェデレートされた学習と融合させるフレームワークを導入し、未学習の要求とアクションの不変記録を確実にする。
この戦略は、フェデレートされた学習モデルの信頼性と完全性を高めるだけでなく、IoT環境に典型的な効率性とセキュリティ上の課題にも対処する。
私たちの重要なコントリビューションには、未学習プロセスの認証メカニズム、データセキュリティとプライバシの向上、IoTシナリオにおけるシステムの応答性を保証するためのデータ管理の最適化などが含まれています。
関連論文リスト
- Blockchain-enhanced Integrity Verification in Educational Content Assessment Platform: A Lightweight and Cost-Efficient Approach [0.0]
教育のデジタル化の増大は、教育コンテンツの完全性と信頼性を維持する上での課題である。
従来のシステムは、特に教師の専門的活動の評価において、データの信頼性を確保し、不正な変更を防ぐことに失敗している。
本稿では,教育資料のレビューと評価を行うためのプラットフォームであるElectronic Platform for Expertise of Content (EPEC)について紹介する。
論文 参考訳(メタデータ) (2024-09-29T23:56:57Z) - Federated TrustChain: Blockchain-Enhanced LLM Training and Unlearning [22.33179965773829]
大規模言語モデル(LLM)のためのブロックチェーンベースの新しいフェデレーション学習フレームワークを提案する。
我々のフレームワークはブロックチェーン技術を活用して、各モデルのコントリビューションの改ざん防止記録を作成し、フェデレートされた学習メカニズムをシームレスに統合する革新的なアンラーニング機能を導入しています。
論文 参考訳(メタデータ) (2024-06-06T13:44:44Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-28T07:08:26Z) - Securing Federated Learning with Control-Flow Attestation: A Novel Framework for Enhanced Integrity and Resilience against Adversarial Attacks [2.28438857884398]
分散機械学習パラダイムとしてのフェデレートラーニング(FL)は、新たなサイバーセキュリティ課題を導入した。
本研究では,従来サイバーセキュリティに用いられてきた制御フロー(CFA)機構にインスパイアされた,革新的なセキュリティフレームワークを提案する。
我々は、ネットワーク全体にわたるモデル更新の完全性を認証し、検証し、モデル中毒や敵対的干渉に関連するリスクを効果的に軽減する。
論文 参考訳(メタデータ) (2024-03-15T04:03:34Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
フェデレートアンラーニング(Federated Unlearning)は、分散クライアントのデータオーナシップを保護するための、有望なパラダイムである。
既存の作業では、分散クライアントからの履歴モデルパラメータを保持するために、中央サーバが必要である。
本稿では,ブロックチェーンによる信頼性の高いフェデレーションアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T07:04:48Z) - Enhancing Scalability and Reliability in Semi-Decentralized Federated
Learning With Blockchain: Trust Penalization and Asynchronous Functionality [0.0]
本論文は, 信頼金化機構を通じて参加ノードの信頼性を高めることに焦点を当てている。
提案システムは、データのプライバシーを損なうことなく、協調的な機械学習のための公正でセキュアで透明な環境を構築することを目的としている。
論文 参考訳(メタデータ) (2023-10-30T06:05:50Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
フェデレートドラーニング(FL)は、学習効率を改善し、AIGCのプライバシー保護を達成するために利用することができる。
我々は,AIGCの強化を目的としたFLベースの技術を提案し,ユーザが多様でパーソナライズされた高品質なコンテンツを作成できるようにすることを目的とする。
論文 参考訳(メタデータ) (2023-07-14T04:13:11Z) - FedBlockHealth: A Synergistic Approach to Privacy and Security in
IoT-Enabled Healthcare through Federated Learning and Blockchain [2.993954417409032]
医療におけるIoT(Internet of Things)デバイスの急速な採用は、データのプライバシ、セキュリティ、患者の安全性を維持する上で、新たな課題をもたらしている。
従来のアプローチでは、計算効率を維持しながら、セキュリティとプライバシを確保する必要がある。
本稿では,フェデレーション学習とブロックチェーン技術を組み合わせて,セキュアでプライバシ保護のソリューションを提供する,新しいハイブリッドアプローチを提案する。
論文 参考訳(メタデータ) (2023-04-16T01:55:31Z) - A Survey of Trustworthy Federated Learning with Perspectives on
Security, Robustness, and Privacy [47.89042524852868]
Federated Learning (FL) は,さまざまな現実のシナリオに対して,有望なソリューションとして注目されている。
しかし、データの分離とプライバシーに関する課題は、FLシステムの信頼性を脅かす。
論文 参考訳(メタデータ) (2023-02-21T12:52:12Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
このトピックに関する最初の包括的な調査を実施します。
FLの概念の簡潔な紹介と、1脅威モデル、2堅牢性に対する中毒攻撃と防御、3プライバシーに対する推論攻撃と防御、というユニークな分類学を通じて、私たちはこの重要なトピックのアクセス可能なレビューを提供します。
論文 参考訳(メタデータ) (2020-12-07T12:11:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。