論文の概要: Federated TrustChain: Blockchain-Enhanced LLM Training and Unlearning
- arxiv url: http://arxiv.org/abs/2406.04076v1
- Date: Thu, 6 Jun 2024 13:44:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 14:49:58.788151
- Title: Federated TrustChain: Blockchain-Enhanced LLM Training and Unlearning
- Title(参考訳): Federated TrustChain: ブロックチェーンによるLLMトレーニングとアンラーニング
- Authors: Xuhan Zuo, Minghao Wang, Tianqing Zhu, Lefeng Zhang, Dayong Ye, Shui Yu, Wanlei Zhou,
- Abstract要約: 大規模言語モデル(LLM)のためのブロックチェーンベースの新しいフェデレーション学習フレームワークを提案する。
我々のフレームワークはブロックチェーン技術を活用して、各モデルのコントリビューションの改ざん防止記録を作成し、フェデレートされた学習メカニズムをシームレスに統合する革新的なアンラーニング機能を導入しています。
- 参考スコア(独自算出の注目度): 22.33179965773829
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of Large Language Models (LLMs) faces a significant challenge: the exhausting of publicly available fresh data. This is because training a LLM needs a large demanding of new data. Federated learning emerges as a promising solution, enabling collaborative model to contribute their private data to LLM global model. However, integrating federated learning with LLMs introduces new challenges, including the lack of transparency and the need for effective unlearning mechanisms. Transparency is essential to ensuring trust and fairness among participants, while accountability is crucial for deterring malicious behaviour and enabling corrective actions when necessary. To address these challenges, we propose a novel blockchain-based federated learning framework for LLMs that enhances transparency, accountability, and unlearning capabilities. Our framework leverages blockchain technology to create a tamper-proof record of each model's contributions and introduces an innovative unlearning function that seamlessly integrates with the federated learning mechanism. We investigate the impact of Low-Rank Adaptation (LoRA) hyperparameters on unlearning performance and integrate Hyperledger Fabric to ensure the security, transparency, and verifiability of the unlearning process. Through comprehensive experiments and analysis, we showcase the effectiveness of our proposed framework in achieving highly effective unlearning in LLMs trained using federated learning. Our findings highlight the feasibility of integrating blockchain technology into federated learning frameworks for LLMs.
- Abstract(参考訳): LLM(Large Language Models)の開発は大きな課題に直面している。
LLMのトレーニングには大量の新しいデータが必要なためです。
フェデレートドラーニングは有望なソリューションとして登場し、協調モデルが自身のプライベートデータをLLMグローバルモデルにコントリビュートできるようにする。
しかし、連合学習とLLMを統合することで、透明性の欠如や効果的なアンラーニングメカニズムの必要性など、新たな課題がもたらされる。
透明性は参加者間の信頼と公正を確保するために不可欠であり、説明責任は悪意のある行動を抑え、必要に応じて修正行動を可能にするために不可欠である。
これらの課題に対処するために、透明性、説明責任、未学習能力を向上するLLMのための、ブロックチェーンベースの新しいフェデレーション学習フレームワークを提案する。
我々のフレームワークはブロックチェーン技術を活用して、各モデルのコントリビューションの改ざん防止記録を作成し、フェデレートされた学習メカニズムをシームレスに統合する革新的なアンラーニング機能を導入しています。
ローランド適応(LoRA)ハイパーパラメータが未学習のパフォーマンスに与える影響を調査し、Hyperledger Fabricを統合して、未学習プロセスのセキュリティ、透明性、検証性を保証する。
総合的な実験と分析を通じて,フェデレート学習を用いて学習したLLMにおいて,非常に効果的なアンラーニングを実現する上で,提案手法の有効性を示す。
我々の発見は、LLMのためのフェデレーション学習フレームワークにブロックチェーン技術を統合する可能性を強調した。
関連論文リスト
- Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示す。
本稿では,テキストベースの生成IoT(GIoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - Federated Learning with Blockchain-Enhanced Machine Unlearning: A Trustworthy Approach [20.74679353443655]
我々は、ブロックチェーンをフェデレートされた学習と融合させるフレームワークを導入し、未学習の要求とアクションの不変記録を確実にする。
私たちの重要なコントリビューションは、アンラーニングプロセスの認証機構、データセキュリティとプライバシの強化、データ管理の最適化などです。
論文 参考訳(メタデータ) (2024-05-27T04:35:49Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - Offset Unlearning for Large Language Models [49.851093293780615]
アンラーニングは、問題のあるトレーニングデータに影響された大規模言語モデルの潜在的な治療法として浮上した。
ブラックボックスLLMのためのオフセットアンラーニングフレームワークである$delta$-unlearningを提案する。
実験によると、$delta$-unlearningは、一般的なアウトオブスコープタスクにおいて、同じような、あるいはより強力なパフォーマンスを維持しながら、ターゲットデータを効果的に解放することができる。
論文 参考訳(メタデータ) (2024-04-17T03:39:51Z) - Enhancing Data Provenance and Model Transparency in Federated Learning
Systems -- A Database Approach [1.2180726230978978]
Federated Learning (FL)は、分散型エッジデバイス間で機械学習モデルをトレーニングするための有望なパラダイムを提供する。
これらの分散環境におけるデータの完全性とトレーサビリティの確保は、依然として重要な課題である。
FLシステムにおけるデータプロファイランスとモデルの透明性を高めるための最初のアプローチの1つを提案する。
論文 参考訳(メタデータ) (2024-03-03T09:08:41Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
大規模言語モデル(LLM)の領域における機械学習の研究
このイニシアチブは、望ましくないデータの影響(機密情報や違法情報など)と関連するモデル機能を排除することを目的としている。
論文 参考訳(メタデータ) (2024-02-13T20:51:58Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - AI Transparency in the Age of LLMs: A Human-Centered Research Roadmap [46.98582021477066]
強力な大規模言語モデル(LLM)の台頭は、イノベーションの絶大な機会をもたらすだけでなく、個人や社会全体のリスクを悪化させます。
我々は LLM と LLM を注入したアプリケーションの開発とデプロイを責任を持って行うための重要な瞬間に到達した。
LLMの透明性を提供するための新しいアプローチを追求することが最重要である。
論文 参考訳(メタデータ) (2023-06-02T22:51:26Z) - Blockchain-based Trustworthy Federated Learning Architecture [16.062545221270337]
ブロックチェーンベースの信頼できるフェデレーション学習アーキテクチャを提案する。
まず、説明責任を実現するために、スマートコントラクトベースのデータモデル証明レジストリを設計する。
また、トレーニングデータの公平性を高めるために、重み付き公正データサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-16T06:13:58Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。