Beyond Conventional Parametric Modeling: Data-Driven Framework for Estimation and Prediction of Time Activity Curves in Dynamic PET Imaging
- URL: http://arxiv.org/abs/2405.21021v1
- Date: Fri, 31 May 2024 17:09:07 GMT
- Title: Beyond Conventional Parametric Modeling: Data-Driven Framework for Estimation and Prediction of Time Activity Curves in Dynamic PET Imaging
- Authors: Niloufar Zakariaei, Arman Rahmim, Eldad Haber,
- Abstract summary: This study introduces an innovative data-driven neural network-based framework, inspired by Reaction Diffusion systems.
Our approach, which adaptively fits TACs from dPET, enables the direct calibration of diffusion coefficients and reaction terms from observed data.
- Score: 4.097001355074171
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Dynamic Positron Emission Tomography (dPET) imaging and Time-Activity Curve (TAC) analyses are essential for understanding and quantifying the biodistribution of radiopharmaceuticals over time and space. Traditional compartmental modeling, while foundational, commonly struggles to fully capture the complexities of biological systems, including non-linear dynamics and variability. This study introduces an innovative data-driven neural network-based framework, inspired by Reaction Diffusion systems, designed to address these limitations. Our approach, which adaptively fits TACs from dPET, enables the direct calibration of diffusion coefficients and reaction terms from observed data, offering significant improvements in predictive accuracy and robustness over traditional methods, especially in complex biological scenarios. By more accurately modeling the spatio-temporal dynamics of radiopharmaceuticals, our method advances modeling of pharmacokinetic and pharmacodynamic processes, enabling new possibilities in quantitative nuclear medicine.
Related papers
- CMINNs: Compartment Model Informed Neural Networks -- Unlocking Drug Dynamics [1.7614751781649955]
We propose an innovative approach that enhances PK and integrated PK-PD modeling.
Our methodology employs a Physics-Informed Neural Network (PINN) and fractional Physics-Informed Neural Networks (fPINNs)
Results demonstrate that this methodology offers a robust framework that markedly enhances the model's depiction of drug absorption rates and distributed delayed responses.
arXiv Detail & Related papers (2024-09-19T15:01:33Z) - HyperSBINN: A Hypernetwork-Enhanced Systems Biology-Informed Neural Network for Efficient Drug Cardiosafety Assessment [0.46435896353765527]
We introduce a novel approach to solving parameterized models of cardiac action potentials by combining meta-learning techniques with Systems Biology-Informed Neural Networks ( SBINNs)
The proposed method, Hyper SBINN, effectively addresses the challenge of predicting the effects of various compounds at different concentrations on cardiac action potentials.
arXiv Detail & Related papers (2024-08-26T13:40:33Z) - Discovering intrinsic multi-compartment pharmacometric models using Physics Informed Neural Networks [0.0]
We introduce PKINNs, a novel purely data-driven neural network model.
PKINNs efficiently discovers and models intrinsic multi-compartment-based pharmacometric structures.
The resulting models are both interpretable and explainable through Symbolic Regression methods.
arXiv Detail & Related papers (2024-04-30T19:31:31Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
We introduce the Neural Eigen Differential Equation algorithm (NESDE)
NESDE provides individualized modeling, tunable generalization to new treatment policies, and fast, continuous, closed-form prediction.
We demonstrate the robustness of NESDE in both synthetic and real medical problems, and use the learned dynamics to publish simulated medical gym environments.
arXiv Detail & Related papers (2023-06-24T17:01:51Z) - Self-Supervised Learning for Physiologically-Based Pharmacokinetic
Modeling in Dynamic PET [36.28565007063204]
Voxel-wise physiologically-based modeling of the time activity curves (TAC) can provide relevant diagnostic information for clinical workflow.
This work introduces a self-supervisedPET loss formulation to enforce the similarity between the measured TAC and those generated with the learned kinetic parameters.
To the best of our knowledge, this is the first self-supervised network that allows elvox-wise computation of kinetic parameters consistent with a non-linear kinetic model.
arXiv Detail & Related papers (2023-05-17T21:08:02Z) - Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep
Learning Model [0.0]
We present an architecture that is tailored to predict high-resolution (spatial and temporal) velocity fields for complex synthetic vascular geometries.
Compared to CFD simulations, the velocity field can be estimated with a mean absolute error of 0.024 m/s, whereas the run time reduces from several hours on a high-performance cluster to a few seconds on a consumer graphical processing unit.
arXiv Detail & Related papers (2023-02-13T17:56:00Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
latent hybridisation model (LHM) integrates a system of expert-designed ODEs with machine-learned Neural ODEs to fully describe the dynamics of the system.
We evaluate LHM on synthetic data as well as real-world intensive care data of COVID-19 patients.
arXiv Detail & Related papers (2021-06-05T11:42:45Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.