論文の概要: Comparing information content of representation spaces for disentanglement with VAE ensembles
- arxiv url: http://arxiv.org/abs/2405.21042v1
- Date: Fri, 31 May 2024 17:33:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 13:19:30.819185
- Title: Comparing information content of representation spaces for disentanglement with VAE ensembles
- Title(参考訳): 異方性表現空間の情報内容とVAEアンサンブルの比較
- Authors: Kieran A. Murphy, Sam Dillavou, Dani S. Bassett,
- Abstract要約: Disentanglementは、機械学習を使用してデータセットに関する情報を意味のある断片に分割する試みである。
繰り返し学習の合奏によって学習された情報の断片として,学習チャネルを集合的に研究する。
- 参考スコア(独自算出の注目度): 3.7277730514654555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Disentanglement is the endeavour to use machine learning to divide information about a dataset into meaningful fragments. In practice these fragments are representation (sub)spaces, often the set of channels in the latent space of a variational autoencoder (VAE). Assessments of disentanglement predominantly employ metrics that are coarse-grained at the model level, but this approach can obscure much about the process of information fragmentation. Here we propose to study the learned channels in aggregate, as the fragments of information learned by an ensemble of repeat training runs. Additionally, we depart from prior work where measures of similarity between individual subspaces neglected the nature of data embeddings as probability distributions. Instead, we view representation subspaces as communication channels that perform a soft clustering of the data; consequently, we generalize two classic information-theoretic measures of similarity between clustering assignments to compare representation spaces. We develop a lightweight method of estimation based on fingerprinting representation subspaces by their ability to distinguish dataset samples, allowing us to identify, analyze, and leverage meaningful structure in ensembles of VAEs trained on synthetic and natural datasets. Using this fully unsupervised pipeline we identify "hotspots" in the space of information fragments: groups of nearly identical representation subspaces that appear repeatedly in an ensemble of VAEs, particularly as regularization is increased. Finally, we leverage the proposed methodology to achieve ensemble learning with VAEs, boosting the information content of a set of weak learners -- a capability not possible with previous methods of assessing channel similarity.
- Abstract(参考訳): Disentanglementは、機械学習を使用してデータセットに関する情報を意味のある断片に分割する試みである。
実際には、これらのフラグメントは表現(部分)空間であり、しばしば変分オートエンコーダ(VAE)の潜在空間内のチャネルの集合である。
絡み合いの評価は、主にモデルレベルで粗い粒度を持つメトリクスを用いるが、このアプローチは情報の断片化の過程を曖昧にすることができる。
本稿では,繰り返し学習の合奏によって学習された情報の断片として,学習チャネルを集約的に研究することを提案する。
さらに,各部分空間間の類似性の尺度が,データ埋め込みの性質を確率分布として無視する先行研究から逸脱する。
代わりに、表現部分空間を、データのソフトクラスタリングを行う通信チャネルとみなし、クラスタリング代入間の類似性に関する2つの古典的な情報理論を一般化し、表現空間を比較する。
本研究では, 指紋表現部分空間に基づく簡易な推定手法を開発し, データセットを識別し, 分析し, 有意義な構造を同定し, 合成データセットと自然データセットを訓練したVAEのアンサンブルに利用できるようにする。
この完全に教師なしのパイプラインを用いて、情報断片の空間における「ホットスポット」を識別する: ほぼ同一の表現部分空間の群は、VAEのアンサンブルに繰り返し現れる。
最後に,提案手法を利用してVAEによるアンサンブル学習を実現し,弱い学習者の集合の情報内容を高める。
関連論文リスト
- Learning Representations without Compositional Assumptions [79.12273403390311]
本稿では,特徴集合をグラフノードとして表現し,それらの関係を学習可能なエッジとして表現することで,特徴集合の依存関係を学習するデータ駆動型アプローチを提案する。
また,複数のビューから情報を動的に集約するために,より小さな潜在グラフを学習する新しい階層グラフオートエンコーダLEGATOを導入する。
論文 参考訳(メタデータ) (2023-05-31T10:36:10Z) - infoVerse: A Universal Framework for Dataset Characterization with
Multidimensional Meta-information [68.76707843019886]
infoVerseは、データセットの特徴付けのための普遍的なフレームワークである。
infoVerseは、様々なモデル駆動メタ情報を統合することで、データセットの多次元特性をキャプチャする。
実世界の3つのアプリケーション(データプルーニング、アクティブラーニング、データアノテーション)において、infoVerse空間で選択されたサンプルは、強いベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2023-05-30T18:12:48Z) - Inv-SENnet: Invariant Self Expression Network for clustering under
biased data [17.25929452126843]
本研究では,各サブ空間におけるデータポイントのクラスタ化を学習しながら,不要な属性(バイアス)を共同で除去する新しいフレームワークを提案する。
合成および実世界のデータセットに対する実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2022-11-13T01:19:06Z) - Leachable Component Clustering [10.377914682543903]
本研究では,非完全データのクラスタリングに対する新たなアプローチとして,リーチ可能なコンポーネントクラスタリングを提案する。
提案手法はベイズアライメントを用いてデータ計算を処理し,理論上失われたパターンを収集する。
いくつかの人工不完全データセットの実験により、提案手法は、他の最先端アルゴリズムと比較して優れた性能を示すことができることを示した。
論文 参考訳(メタデータ) (2022-08-28T13:13:17Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
完全ラベル付きデータからの学習は、Person Re-IdentificationやText Authorship Attributionなどのマルチメディアフォレスト問題において困難である。
近年の自己教師型学習法は,基礎となるクラスに意味的差異が有る場合に,完全ラベル付きデータを扱う際に有効であることが示されている。
本研究では,異なるクラスからのサンプルが顕著に多様性を持っていない場合でも,ラベルのないデータから学習できるようにすることにより,個人再認識とテキストオーサシップの属性に対処する戦略を提案する。
論文 参考訳(メタデータ) (2022-02-07T13:08:11Z) - Discriminative Supervised Subspace Learning for Cross-modal Retrieval [16.035973055257642]
クロスモーダル検索のための識別型教師付き部分空間学習法(DS2L)を提案する。
具体的には、まず、各モダリティ内の意味構造を保存するために、共有セマンティックグラフを構築する。
次に,Hilbert-Schmidt Independence Criterion (HSIC)を導入し,特徴相似性とサンプルの意味相似性との相似性を維持する。
論文 参考訳(メタデータ) (2022-01-26T14:27:39Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
セマンティックセグメンテーションのためのモデルに依存しない訓練手法を提案する。
各トレーニングイテレーションで特定のクラス情報をランダムに除去することにより、クラス間の機能依存を効果的に削減する。
提案手法で訓練したモデルは,複数のセマンティックセグメンテーションベンチマークにおいて強い結果を示す。
論文 参考訳(メタデータ) (2021-10-31T16:15:09Z) - Integrating Auxiliary Information in Self-supervised Learning [94.11964997622435]
まず、補助情報がデータ構造に関する有用な情報をもたらす可能性があることを観察する。
補助情報に基づいてデータクラスタを構築する。
我々はCl-InfoNCEがデータクラスタリング情報を活用するためのより良いアプローチであることを示した。
論文 参考訳(メタデータ) (2021-06-05T11:01:15Z) - Contrastive analysis for scatter plot-based representations of
dimensionality reduction [0.0]
本稿では,マルチ次元データセットを探索し,クラスタの形成を解釈する手法を提案する。
また,属性がクラスタ形成にどのように影響するかを理解するために使用される統計変数間の関係を視覚的に解釈し,探索する二部グラフも導入する。
論文 参考訳(メタデータ) (2021-01-26T01:16:31Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z) - Learning Unbiased Representations via Mutual Information Backpropagation [36.383338079229695]
特に、モデルによって学習された場合、データのいくつかの属性(バイアス)が一般化特性を著しく損なう可能性がある場合に直面します。
本稿では,学習した表現とデータ属性の相互情報を同時に推定し,最小化する,新しいエンドツーエンド最適化手法を提案する。
論文 参考訳(メタデータ) (2020-03-13T18:06:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。