Comparing the information content of probabilistic representation spaces
- URL: http://arxiv.org/abs/2405.21042v2
- Date: Mon, 21 Oct 2024 17:50:10 GMT
- Title: Comparing the information content of probabilistic representation spaces
- Authors: Kieran A. Murphy, Sam Dillavou, Dani S. Bassett,
- Abstract summary: Probabilistic representation spaces convey information about a dataset, and to understand the effects of factors such as training loss and network architecture, we seek to compare the information content of such spaces.
Here, instead of building upon point-based measures of comparison, we build upon classic methods from literature on hard clustering.
We propose a practical method of estimation that is based on fingerprinting a representation space with a sample of the dataset and is applicable when the communicated information is only a handful of bits.
- Score: 3.7277730514654555
- License:
- Abstract: Probabilistic representation spaces convey information about a dataset, and to understand the effects of factors such as training loss and network architecture, we seek to compare the information content of such spaces. However, most existing methods to compare representation spaces assume representations are points, and neglect the distributional nature of probabilistic representations. Here, instead of building upon point-based measures of comparison, we build upon classic methods from literature on hard clustering. We generalize two information-theoretic methods of comparing hard clustering assignments to be applicable to general probabilistic representation spaces. We then propose a practical method of estimation that is based on fingerprinting a representation space with a sample of the dataset and is applicable when the communicated information is only a handful of bits. With unsupervised disentanglement as a motivating problem, we find information fragments that are repeatedly contained in individual latent dimensions in VAE and InfoGAN ensembles. Then, by comparing the full latent spaces of models, we find highly consistent information content across datasets, methods, and hyperparameters, even though there is often a point during training with substantial variety across repeat runs. Finally, we leverage the differentiability of the proposed method and perform model fusion by synthesizing the information content of multiple weak learners, each incapable of representing the global structure of a dataset. Across the case studies, the direct comparison of information content provides a natural basis for understanding the processing of information.
Related papers
- Learning Representations without Compositional Assumptions [79.12273403390311]
We propose a data-driven approach that learns feature set dependencies by representing feature sets as graph nodes and their relationships as learnable edges.
We also introduce LEGATO, a novel hierarchical graph autoencoder that learns a smaller, latent graph to aggregate information from multiple views dynamically.
arXiv Detail & Related papers (2023-05-31T10:36:10Z) - infoVerse: A Universal Framework for Dataset Characterization with
Multidimensional Meta-information [68.76707843019886]
infoVerse is a universal framework for dataset characterization.
infoVerse captures multidimensional characteristics of datasets by incorporating various model-driven meta-information.
In three real-world applications (data pruning, active learning, and data annotation), the samples chosen on infoVerse space consistently outperform strong baselines.
arXiv Detail & Related papers (2023-05-30T18:12:48Z) - Inv-SENnet: Invariant Self Expression Network for clustering under
biased data [17.25929452126843]
We propose a novel framework for jointly removing unwanted attributes (biases) while learning to cluster data points in individual subspaces.
Our experimental result on synthetic and real-world datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2022-11-13T01:19:06Z) - Leachable Component Clustering [10.377914682543903]
In this work, a novel approach to clustering of incomplete data, termed leachable component clustering, is proposed.
The proposed method handles data imputation with Bayes alignment, and collects the lost patterns in theory.
Experiments on several artificial incomplete data sets demonstrate that, the proposed method is able to present superior performance compared with other state-of-the-art algorithms.
arXiv Detail & Related papers (2022-08-28T13:13:17Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
Learning from fully-unlabeled data is challenging in Multimedia Forensics problems, such as Person Re-Identification and Text Authorship Attribution.
Recent self-supervised learning methods have shown to be effective when dealing with fully-unlabeled data in cases where the underlying classes have significant semantic differences.
We propose a strategy to tackle Person Re-Identification and Text Authorship Attribution by enabling learning from unlabeled data even when samples from different classes are not prominently diverse.
arXiv Detail & Related papers (2022-02-07T13:08:11Z) - Discriminative Supervised Subspace Learning for Cross-modal Retrieval [16.035973055257642]
We propose a discriminative supervised subspace learning for cross-modal retrieval(DS2L)
Specifically, we first construct a shared semantic graph to preserve the semantic structure within each modality.
We then introduce the Hilbert-Schmidt Independence Criterion(HSIC) to preserve the consistence between feature-similarity and semantic-similarity of samples.
arXiv Detail & Related papers (2022-01-26T14:27:39Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - Integrating Auxiliary Information in Self-supervised Learning [94.11964997622435]
We first observe that the auxiliary information may bring us useful information about data structures.
We present to construct data clusters according to the auxiliary information.
We show that Cl-InfoNCE may be a better approach to leverage the data clustering information.
arXiv Detail & Related papers (2021-06-05T11:01:15Z) - Contrastive analysis for scatter plot-based representations of
dimensionality reduction [0.0]
This paper introduces a methodology to explore multidimensional datasets and interpret clusters' formation.
We also introduce a bipartite graph to visually interpret and explore the relationship between the statistical variables used to understand how the attributes influenced cluster formation.
arXiv Detail & Related papers (2021-01-26T01:16:31Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z) - Learning Unbiased Representations via Mutual Information Backpropagation [36.383338079229695]
In particular, we face the case where some attributes (bias) of the data, if learned by the model, can severely compromise its generalization properties.
We propose a novel end-to-end optimization strategy, which simultaneously estimates and minimizes the mutual information between the learned representation and the data attributes.
arXiv Detail & Related papers (2020-03-13T18:06:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.