An Organic Weed Control Prototype using Directed Energy and Deep Learning
- URL: http://arxiv.org/abs/2405.21056v1
- Date: Fri, 31 May 2024 17:47:22 GMT
- Title: An Organic Weed Control Prototype using Directed Energy and Deep Learning
- Authors: Deng Cao, Hongbo Zhang, Rajveer Dhillon,
- Abstract summary: The robot uses a novel distributed array robot (DAR) unit for weed treatment.
The robot uses a patented directed energy plant eradication recipe that is completely organic and UV-C free.
The deep learning can classify 8 common weed species in a soybean field under natural environment with up to 98% accuracy.
- Score: 4.991748533338917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Organic weed control is a vital to improve crop yield with a sustainable approach. In this work, a directed energy weed control robot prototype specifically designed for organic farms is proposed. The robot uses a novel distributed array robot (DAR) unit for weed treatment. Soybean and corn databases are built to train deep learning neural nets to perform weed recognition. The initial deep learning neural nets show a high performance in classifying crops. The robot uses a patented directed energy plant eradication recipe that is completely organic and UV-C free, with no chemical damage or physical disturbance to the soil. The deep learning can classify 8 common weed species in a soybean field under natural environment with up to 98% accuracy.
Related papers
- Towards Efficient and Intelligent Laser Weeding: Method and Dataset for Weed Stem Detection [51.65457287518379]
This study is the first empirical investigation of weed recognition for laser weeding.
We integrate the detection of crop and weed with the localization of weed stem into one end-to-end system.
The proposed system improves weeding accuracy by 6.7% and reduces energy cost by 32.3% compared to existing weed recognition systems.
arXiv Detail & Related papers (2025-02-10T08:42:46Z) - RoMu4o: A Robotic Manipulation Unit For Orchard Operations Automating Proximal Hyperspectral Leaf Sensing [2.1038216828914145]
Leaf-level hyperspectral spectroscopy is shown to be a powerful tool for phenotyping, monitoring crop health, identifying essential nutrients within plants as well as detecting diseases and water stress.
This work introduces RoMu4o, a robotic manipulation unit for orchard operations offering an automated solution for proximal hyperspectral leaf sensing.
arXiv Detail & Related papers (2025-01-18T01:04:02Z) - BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chem is a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction.
Our model captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions.
This development empowers chemists to adeptly address novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science.
arXiv Detail & Related papers (2024-08-19T05:17:40Z) - Autonomous Agriculture Robot for Smart Farming [0.0]
AAR is a lightweight, solar-electric powered robot that uses intelligent perception for conducting detection and classification of plants and their characteristics.
The robot can deliver fertilizer spraying, insecticide, herbicide, and other fluids to the targets such as crops, weeds, and other pests.
arXiv Detail & Related papers (2022-08-02T19:38:48Z) - Automated Wheat Disease Detection using a ROS-based Autonomous Guided
UAV [0.0]
A smart autonomous system has been implemented on an unmanned aerial vehicle to automate the task of monitoring wheat fields.
An image-based deep learning approach is used to detect and classify disease-infected wheat plants.
A mapping and navigation system is presented using a simulation in the robot operating system and Gazebo environments.
arXiv Detail & Related papers (2022-06-30T06:12:48Z) - Towards self-organized control: Using neural cellular automata to
robustly control a cart-pole agent [62.997667081978825]
We use neural cellular automata to control a cart-pole agent.
We trained the model using deep-Q learning, where the states of the output cells were used as the Q-value estimates to be optimized.
arXiv Detail & Related papers (2021-06-29T10:49:42Z) - High precision control and deep learning-based corn stand counting
algorithms for agricultural robot [8.16286714346538]
This paper presents high precision control and deep learning-based corn stand counting algorithms for a low-cost, ultra-compact 3D printed and autonomous field robot.
The robot, termed TerraSentia, is designed to automate the measurement of plant traits for efficient phenotyping.
arXiv Detail & Related papers (2021-03-21T01:13:38Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search [83.22850633478302]
Retrosynthetic planning identifies a series of reactions that can lead to the synthesis of a target product.
Existing methods either require expensive return estimation by rollout with high variance, or optimize for search speed rather than the quality.
We propose Retro*, a neural-based A*-like algorithm that finds high-quality synthetic routes efficiently.
arXiv Detail & Related papers (2020-06-29T05:53:33Z) - Populations of Spiking Neurons for Reservoir Computing: Closed Loop
Control of a Compliant Quadruped [64.64924554743982]
We present a framework for implementing central pattern generators with spiking neural networks to obtain closed loop robot control.
We demonstrate the learning of predefined gait patterns, speed control and gait transition on a simulated model of a compliant quadrupedal robot.
arXiv Detail & Related papers (2020-04-09T14:32:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.