論文の概要: Mixed Diffusion for 3D Indoor Scene Synthesis
- arxiv url: http://arxiv.org/abs/2405.21066v2
- Date: Mon, 09 Dec 2024 22:33:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 22:09:44.958152
- Title: Mixed Diffusion for 3D Indoor Scene Synthesis
- Title(参考訳): 3次元室内シーン合成のための混合拡散
- Authors: Siyi Hu, Diego Martin Arroyo, Stephanie Debats, Fabian Manhardt, Luca Carlone, Federico Tombari,
- Abstract要約: 提案するMiDiffusionは,可塑性3次元屋内シーンを合成するための混合離散連続拡散モデルである。
床条件の3次元シーン合成において,最先端の自己回帰モデルおよび拡散モデルより優れることを示す。
- 参考スコア(独自算出の注目度): 55.94569112629208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating realistic 3D scenes is an area of growing interest in computer vision and robotics. However, creating high-quality, diverse synthetic 3D content often requires expert intervention, making it costly and complex. Recently, efforts to automate this process with learning techniques, particularly diffusion models, have shown significant improvements in tasks like furniture rearrangement. However, applying diffusion models to floor-conditioned indoor scene synthesis remains under-explored. This task is especially challenging as it requires arranging objects in continuous space while selecting from discrete object categories, posing unique difficulties for conventional diffusion methods. To bridge this gap, we present MiDiffusion, a novel mixed discrete-continuous diffusion model designed to synthesize plausible 3D indoor scenes given a floor plan and pre-arranged objects. We represent a scene layout by a 2D floor plan and a set of objects, each defined by category, location, size, and orientation. Our approach uniquely applies structured corruption across mixed discrete semantic and continuous geometric domains, resulting in a better-conditioned problem for denoising. Evaluated on the 3D-FRONT dataset, MiDiffusion outperforms state-of-the-art autoregressive and diffusion models in floor-conditioned 3D scene synthesis. Additionally, it effectively handles partial object constraints via a corruption-and-masking strategy without task-specific training, demonstrating advantages in scene completion and furniture arrangement tasks.
- Abstract(参考訳): リアルな3Dシーンを生成することは、コンピュータビジョンとロボット工学への関心が高まっている分野だ。
しかし、高品質で多様な合成3Dコンテンツを作成するには、しばしば専門家の介入を必要とし、費用がかかり複雑になる。
近年,この過程を学習技術,特に拡散モデルで自動化しようとする試みは,家具の再配置などのタスクにおいて顕著に改善されている。
しかし, フロアコンディショニング屋内シーン合成への拡散モデルの適用は未検討のままである。
このタスクは、離散オブジェクトカテゴリから選択しながら連続空間にオブジェクトを配置する必要があるため、特に困難であり、従来の拡散法に特有の困難を生じさせる。
このギャップを埋めるために,フロアプランと事前配置オブジェクトを付与した可塑性3次元屋内シーンを合成するために設計された,離散連続拡散モデルであるMiDiffusionを提案する。
シーンレイアウトを2次元のフロアプランとオブジェクトの集合で表現し、それぞれがカテゴリ、場所、サイズ、方向によって定義される。
我々のアプローチは、離散的意味領域と連続幾何学領域をまたいだ構造的腐敗を独自に適用し、より条件付きの問題をもたらす。
MiDiffusionは3D-FRONTデータセットで評価され、フロアコンディショニングされた3Dシーン合成において最先端の自己回帰モデルと拡散モデルより優れている。
さらに、タスク固有のトレーニングを使わずに、部分的オブジェクト制約を汚職・マスキング戦略で効果的に処理し、シーン補完と家具配置タスクの利点を実証する。
関連論文リスト
- CasaGPT: Cuboid Arrangement and Scene Assembly for Interior Design [35.11283253765395]
室内シーン合成のための新しい手法として,分解した立方体プリミティブをシーン内の3次元オブジェクトに配置する手法を提案する。
提案手法はCuboid Arrangement and Scene AssemblyのCasaGPTと呼ばれ, 自動回帰モデルを用いてキューブを逐次配置し, 物理的に可視なシーンを生成する。
論文 参考訳(メタデータ) (2025-04-28T04:35:04Z) - HiScene: Creating Hierarchical 3D Scenes with Isometric View Generation [50.206100327643284]
HiSceneは、2D画像生成と3Dオブジェクト生成のギャップを埋める新しい階層的なフレームワークである。
構成構造を維持しながら2次元表現に整合した3次元コンテンツを生成する。
論文 参考訳(メタデータ) (2025-04-17T16:33:39Z) - MLLM-For3D: Adapting Multimodal Large Language Model for 3D Reasoning Segmentation [87.30919771444117]
推論セグメンテーション(Reasoning segmentation)は、人間の意図と空間的推論に基づく複雑なシーンにおける対象オブジェクトのセグメンテーションを目的としている。
最近のマルチモーダル大言語モデル(MLLM)は印象的な2次元画像推論セグメンテーションを実証している。
本稿では,2次元MLLMから3次元シーン理解へ知識を伝達するフレームワークであるMLLM-For3Dを紹介する。
論文 参考訳(メタデータ) (2025-03-23T16:40:20Z) - DeBaRA: Denoising-Based 3D Room Arrangement Generation [22.96293773013579]
有界環境における正確で制御可能で柔軟なアレンジメント生成に適したスコアベースモデルであるDeBaRAを紹介する。
本研究では,オブジェクトの空間特性に着目して,シーン合成や完了,再配置など,複数のダウンストリームアプリケーションを実行するために,単一トレーニングされたDeBaRAモデルをテスト時に活用できることを実証する。
論文 参考訳(メタデータ) (2024-09-26T23:18:25Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - Object-level Scene Deocclusion [92.39886029550286]
オブジェクトレベルのシーン・デクルージョンのためのPArallel可視・コミュールト拡散フレームワークPACOを提案する。
PACOをトレーニングするために、500kサンプルの大規模なデータセットを作成し、自己教師付き学習を可能にします。
COCOAと様々な現実世界のシーンの実験では、PACOがシーンの排除に優れた能力を示し、芸術の状態をはるかに上回っている。
論文 参考訳(メタデータ) (2024-06-11T20:34:10Z) - SUGAR: Pre-training 3D Visual Representations for Robotics [85.55534363501131]
ロボット工学のための新しい3D事前学習フレームワークSUGARを紹介した。
SUGARは3次元の点雲を通してオブジェクトの意味的、幾何学的、および余分な特性をキャプチャする。
SuGARの3D表現は最先端の2Dおよび3D表現よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-04-01T21:23:03Z) - Zero123-6D: Zero-shot Novel View Synthesis for RGB Category-level 6D Pose Estimation [66.3814684757376]
本研究は,RGB 6Dのカテゴリレベルでのポーズ推定を向上するための拡散モデルに基づく新規ビュー合成器の実用性を示す最初の研究であるZero123-6Dを示す。
本手法は,データ要求の低減,ゼロショットカテゴリレベルの6Dポーズ推定タスクにおける深度情報の必要性の除去,およびCO3Dデータセットの実験により定量的に示された性能の向上を示す。
論文 参考訳(メタデータ) (2024-03-21T10:38:18Z) - DiffuScene: Denoising Diffusion Models for Generative Indoor Scene
Synthesis [44.521452102413534]
拡散モデルに基づく屋内3次元シーン合成のためのDiffuSceneを提案する。
非順序オブジェクトセットに格納された3Dインスタンスプロパティを生成し、各オブジェクト設定に最もよく似た幾何学を検索する。
論文 参考訳(メタデータ) (2023-03-24T18:00:15Z) - Diffusion-based Generation, Optimization, and Planning in 3D Scenes [89.63179422011254]
本稿では,3次元シーン理解のための条件付き生成モデルであるSceneDiffuserを紹介する。
SceneDiffuserは本質的にシーン認識、物理ベース、ゴール指向である。
従来のモデルに比べて大幅な改善が見られた。
論文 参考訳(メタデータ) (2023-01-15T03:43:45Z) - ATISS: Autoregressive Transformers for Indoor Scene Synthesis [112.63708524926689]
我々は,合成室内環境を構築するための新しい自己回帰型トランスフォーマーアーキテクチャであるATISSを紹介する。
この定式化は、ATISSが完全に自動的な部屋レイアウト合成を超えて一般的に有用になるため、より自然なものであると我々は主張する。
本モデルは,ラベル付き3Dバウンディングボックスのみを監督として,自動回帰生成モデルとしてエンドツーエンドで訓練されている。
論文 参考訳(メタデータ) (2021-10-07T17:58:05Z) - RandomRooms: Unsupervised Pre-training from Synthetic Shapes and
Randomized Layouts for 3D Object Detection [138.2892824662943]
有望な解決策は、CADオブジェクトモデルで構成される合成データセットをよりよく利用して、実際のデータセットでの学習を促進することである。
最近の3次元事前学習の研究は、合成物体から他の実世界の応用へ学習した伝達特性が失敗することを示している。
本研究では,この目的を達成するためにRandomRoomsという新しい手法を提案する。
論文 参考訳(メタデータ) (2021-08-17T17:56:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。