論文の概要: EHR-SeqSQL : A Sequential Text-to-SQL Dataset For Interactively Exploring Electronic Health Records
- arxiv url: http://arxiv.org/abs/2406.00019v1
- Date: Thu, 23 May 2024 07:14:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-09 16:19:21.677029
- Title: EHR-SeqSQL : A Sequential Text-to-SQL Dataset For Interactively Exploring Electronic Health Records
- Title(参考訳): EHR-SeqSQL : 電子健康記録を相互に探索するシークエンシャルテキスト-SQLデータセット
- Authors: Jaehee Ryu, Seonhee Cho, Gyubok Lee, Edward Choi,
- Abstract要約: EHRデータベースのための新しいシーケンシャルテキスト・ツー・スクールのデータセットであるEHR-Seqを紹介する。
EHR-Seqは、シーケンシャルな質問と文脈的な質問を含む最初の医療用テキストからsqlのデータセットベンチマークである。
本実験は, 単ターン法よりも多ターン法の方が構成性に優れていることを示す。
- 参考スコア(独自算出の注目度): 11.78795632771211
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce EHR-SeqSQL, a novel sequential text-to-SQL dataset for Electronic Health Record (EHR) databases. EHR-SeqSQL is designed to address critical yet underexplored aspects in text-to-SQL parsing: interactivity, compositionality, and efficiency. To the best of our knowledge, EHR-SeqSQL is not only the largest but also the first medical text-to-SQL dataset benchmark to include sequential and contextual questions. We provide a data split and the new test set designed to assess compositional generalization ability. Our experiments demonstrate the superiority of a multi-turn approach over a single-turn approach in learning compositionality. Additionally, our dataset integrates specially crafted tokens into SQL queries to improve execution efficiency. With EHR-SeqSQL, we aim to bridge the gap between practical needs and academic research in the text-to-SQL domain.
- Abstract(参考訳): 本稿ではEHR(Electronic Health Record)データベースのための新しいシーケンシャルテキスト-SQLデータセットであるEHR-SeqSQLを紹介する。
EHR-SeqSQLは、対話性、構成性、効率性といった、テキストからSQLへのパースにおいて重要で未探索の側面に対処するように設計されている。
私たちの知る限りでは、EHR-SeqSQLは最大のだけでなく、シーケンシャルな質問や文脈的な質問を含む最初の医療用テキスト-SQLデータセットベンチマークです。
我々は、合成一般化能力を評価するために、データ分割と新しいテストセットを提供する。
本実験は,学習構成性において,単ターンアプローチよりも多ターンアプローチの方が優れていることを示す。
さらに、我々のデータセットは特別に作られたトークンをSQLクエリに統合し、実行効率を向上させる。
EHR-SeqSQLでは,テキストからSQLへの領域における実践的ニーズと学術研究のギャップを埋めることを目指しています。
関連論文リスト
- LG AI Research & KAIST at EHRSQL 2024: Self-Training Large Language Models with Pseudo-Labeled Unanswerable Questions for a Reliable Text-to-SQL System on EHRs [58.59113843970975]
テキストから回答へのモデルは、Electronic Health Recordsを知識のない医療専門家に利用できるようにする上で重要なものだ。
疑似ラベル付き非解答質問を用いた自己学習戦略を提案し,EHRのテキスト・ツー・アンサーモデルの信頼性を高める。
論文 参考訳(メタデータ) (2024-05-18T03:25:44Z) - SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data [54.69489315952524]
Prompt"は、Text-to-LLMのいくつかのショットプロンプト機能を改善するように設計されている。
Prompt"は、ラベル付きデータが少なく、テキスト内学習における従来のアプローチよりも大きなマージンで優れている。
emphPromptはテキスト内学習における従来の手法よりも優れており,ラベル付きデータはほとんどない。
論文 参考訳(メタデータ) (2023-11-06T05:24:06Z) - SQLformer: Deep Auto-Regressive Query Graph Generation for Text-to-SQL Translation [16.07396492960869]
本稿では,テキストからテキストへの変換処理に特化して設計されたトランスフォーマーアーキテクチャを提案する。
我々のモデルは、実行可能層とデコーダ層に構造的帰納バイアスを組み込んで、クエリを自動で抽象構文木(AST)として予測する。
論文 参考訳(メタデータ) (2023-10-27T00:13:59Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - Can LLM Already Serve as A Database Interface? A BIg Bench for
Large-Scale Database Grounded Text-to-SQLs [89.68522473384522]
テキストから効率のよいタスクをベースとした大規模データベースのための大規模なベンチマークであるBirdを紹介します。
データベースの値に重点を置いていると、汚いデータベースコンテンツに対する新たな課題が浮き彫りになる。
最も効果的なテキストから効率のよいモデルであるChatGPTでさえ、実行精度はわずか40.08%である。
論文 参考訳(メタデータ) (2023-05-04T19:02:29Z) - EHRSQL: A Practical Text-to-SQL Benchmark for Electronic Health Records [36.213730355895805]
発声は、医師、看護師、保険審査・健康記録チームを含む222人の病院職員から集められた。
我々はこれらの質問を、MIMIC-IIIとeICUの2つのオープンソースのEHRデータベースに手動でリンクし、データセットに様々な時間表現と解決不可能な質問を格納した。
論文 参考訳(メタデータ) (2023-01-16T05:10:20Z) - A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future
Directions [102.8606542189429]
テキストからコーパスへのパースの目的は、自然言語(NL)質問をデータベースが提供するエビデンスに基づいて、対応する構造化クエリ言語()に変換することである。
ディープニューラルネットワークは、入力NL質問から出力クエリへのマッピング関数を自動的に学習するニューラルジェネレーションモデルによって、このタスクを大幅に進歩させた。
論文 参考訳(メタデータ) (2022-08-29T14:24:13Z) - Speech-to-SQL: Towards Speech-driven SQL Query Generation From Natural
Language Question [18.40290951253122]
音声による入力は、スマートフォンやタブレットの人気により、大きな勢いを増している。
本稿では,構造化データデータベースを問合せするための,より効率的な音声インタフェースの設計について検討する。
我々は,人間の音声を直接クエリーに変換するために,SpeechNetという新しいエンドツーエンドニューラルアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-01-04T15:38:36Z) - Weakly Supervised Text-to-SQL Parsing through Question Decomposition [53.22128541030441]
我々は最近提案されたQDMR(QDMR)という意味表現を活用している。
質問やQDMR構造(非専門家によって注釈付けされたり、自動予測されたりする)、回答が与えられたら、我々は自動的にsqlクエリを合成できる。
本結果は,NL-ベンチマークデータを用いて訓練したモデルと,弱い教師付きモデルが競合することを示す。
論文 参考訳(メタデータ) (2021-12-12T20:02:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。