論文の概要: Unveiling Themes in Judicial Proceedings: A Cross-Country Study Using Topic Modeling on Legal Documents from India and the UK
- arxiv url: http://arxiv.org/abs/2406.00040v2
- Date: Sun, 30 Jun 2024 04:37:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 13:50:34.232967
- Title: Unveiling Themes in Judicial Proceedings: A Cross-Country Study Using Topic Modeling on Legal Documents from India and the UK
- Title(参考訳): 司法手続における主題の暴露:インドとイギリスにおける法的文書のトピックモデリングを用いたクロスカウンタリー研究
- Authors: Krish Didwania, Dr. Durga Toshniwal, Amit Agarwal,
- Abstract要約: 過去の事例をサブグループに体系的に分類することが重要である。
この取り組みの主な焦点は、ラテントディリクレ割当、非負行列分解、ベルトトピックといったトピックモデリングアルゴリズムを用いて、ケースをアノテートすることであった。
インドからの症例の時系列分析は、長年にわたって支配的なトピックの進化を明らかにするために行われた。
- 参考スコア(独自算出の注目度): 1.0753191494611891
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Legal documents are indispensable in every country for legal practices and serve as the primary source of information regarding previous cases and employed statutes. In today's world, with an increasing number of judicial cases, it is crucial to systematically categorize past cases into subgroups, which can then be utilized for upcoming cases and practices. Our primary focus in this endeavor was to annotate cases using topic modeling algorithms such as Latent Dirichlet Allocation, Non-Negative Matrix Factorization, and Bertopic for a collection of lengthy legal documents from India and the UK. This step is crucial for distinguishing the generated labels between the two countries, highlighting the differences in the types of cases that arise in each jurisdiction. Furthermore, an analysis of the timeline of cases from India was conducted to discern the evolution of dominant topics over the years.
- Abstract(参考訳): 法律文書は法律実務に欠かせないものであり、前回の事件や雇用法に関する主要な情報源として機能している。
今日の世界では、司法事件が増えているため、過去の事件を体系的にサブグループに分類することが重要であり、今後の事件や慣行に利用できるようになる。
この取り組みの主な焦点は、インドとイギリスからの長い法的文書の収集のために、レイト・ディリクレ・アロケーション、非負行列因子化、ベルトトピックといったトピックモデリングアルゴリズムを使用した事例を注釈することであった。
このステップは、2つの国間で生成されたラベルを区別するために重要であり、各管轄区域で発生するケースの種類の違いを強調している。
さらに、インドからの事例の時系列分析を行い、長年の有力トピックの進化を解明した。
関連論文リスト
- Topic Modelling Case Law Using a Large Language Model and a New Taxonomy for UK Law: AI Insights into Summary Judgment [0.0]
本稿では,英国における要約判断事例をモデル化するための新しい分類法の開発と適用について述べる。
要約判断事例のキュレートされたデータセットを用いて,Large Language Model Claude 3 Opusを用いて,機能的トピックとトレンドを探索する。
クロード3オプスはこのトピックを87.10%の精度で正しく分類した。
論文 参考訳(メタデータ) (2024-05-21T16:30:25Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - PILOT: Legal Case Outcome Prediction with Case Law [43.680862577060765]
判例法を用いて判例結果の予測を行う際の2つのユニークな課題を同定する。
第一に、意思決定において裁判官の基本的な証拠となる関連する前例を特定することが重要である。
第二に、初期の事例は異なる法的文脈に従う可能性があるため、時間とともに法原則の進化を考慮する必要がある。
論文 参考訳(メタデータ) (2024-01-28T21:18:05Z) - Discovering Significant Topics from Legal Decisions with Selective
Inference [0.0]
本稿では,法的決定文から重要なトピックを発見するための自動パイプラインの提案と評価を行う。
本手法は, 結果, 話題語分布, ケーストピックの重みと有意に相関した症例トピックを同定する。
パイプラインによって導かれるトピックは,双方の分野の法的ドクトリンと一致しており,他の関連する法的分析タスクに有用であることを示す。
論文 参考訳(メタデータ) (2024-01-02T07:00:24Z) - MUSER: A Multi-View Similar Case Retrieval Dataset [65.36779942237357]
類似事例検索(SCR)は、司法公正の促進に重要な役割を果たす代表的法的AIアプリケーションである。
既存のSCRデータセットは、ケース間の類似性を判断する際にのみ、事実記述セクションにフォーカスする。
本稿では,多視点類似度測定に基づく類似事例検索データセットMと,文レベル法定要素アノテーションを用いた包括的法定要素を提案する。
論文 参考訳(メタデータ) (2023-10-24T08:17:11Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
法的判断予測(LJP)は、法律AIにおいてますます重要な課題となっている。
先行は、同様の事実を持つ以前の訴訟であり、国家法制度におけるその後の事件の判断の基礎となっている。
近年のディープラーニングの進歩により、LJPタスクの解決に様々なテクニックが使えるようになった。
論文 参考訳(メタデータ) (2023-10-13T16:47:20Z) - Automated Refugee Case Analysis: An NLP Pipeline for Supporting Legal
Practitioners [0.0]
本稿では,訴訟から対象情報を検索,処理,抽出するためのエンドツーエンドパイプラインを提案する。
カナダにおける難民法を事例として,未研究の法域を調査した。
論文 参考訳(メタデータ) (2023-05-24T19:37:23Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
判例検索は知的法体系において中心的な役割を果たす。
既存の言語モデルの多くは、異なる構造間の長距離依存関係を理解するのが難しい。
本稿では, LEgal ケース検索のための構造対応プレトランザクショナル言語モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T10:47:01Z) - Legal Element-oriented Modeling with Multi-view Contrastive Learning for
Legal Case Retrieval [3.909749182759558]
本稿では,多視点コントラスト学習目標を用いた訴訟検索のための対話型ネットワークを提案する。
ケースビューコントラスト学習は、関連する訴訟表現の間の隠れた空間距離を最小化する。
ケースの法的な要素を検出するために、法的な要素の知識を意識した指標を用いています。
論文 参考訳(メタデータ) (2022-10-11T06:47:23Z) - What About the Precedent: An Information-Theoretic Analysis of Common
Law [64.49276556192073]
一般的な法律では、新しい事件の結果は、既存の法令ではなく、前例によって決定されることが多い。
私たちは、2つの長年にわたる法学的な見解を比較することで、この問題に最初に取り組みました。
前例の主張は事件の結果と0.38ナットの情報を共有しているのに対し、前例の事実は0.18ナットの情報しか共有していない。
論文 参考訳(メタデータ) (2021-04-25T11:20:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。