論文の概要: An Efficient Multi Quantile Regression Network with Ad Hoc Prevention of Quantile Crossing
- arxiv url: http://arxiv.org/abs/2406.00080v1
- Date: Fri, 31 May 2024 12:04:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 08:43:16.483402
- Title: An Efficient Multi Quantile Regression Network with Ad Hoc Prevention of Quantile Crossing
- Title(参考訳): 量子交差のアドホック防止による効率的な多重量子回帰ネットワーク
- Authors: Jens Decke, Arne Jenß, Bernhard Sick, Christian Gruhl,
- Abstract要約: 本稿では,高度な量子回帰モデルであるSorting Composite Quantile Regression Neural Network (SCQRNN)について述べる。
トレーニングにおいてアドホックソートを統合することで、SCQRNNは非交差量子化を保証するとともに、モデルの信頼性と解釈可能性を高める。
- 参考スコア(独自算出の注目度): 1.49199020343864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article presents the Sorting Composite Quantile Regression Neural Network (SCQRNN), an advanced quantile regression model designed to prevent quantile crossing and enhance computational efficiency. Integrating ad hoc sorting in training, the SCQRNN ensures non-intersecting quantiles, boosting model reliability and interpretability. We demonstrate that the SCQRNN not only prevents quantile crossing and reduces computational complexity but also achieves faster convergence than traditional models. This advancement meets the requirements of high-performance computing for sustainable, accurate computation. In organic computing, the SCQRNN enhances self-aware systems with predictive uncertainties, enriching applications across finance, meteorology, climate science, and engineering.
- Abstract(参考訳): 本稿では,Sorting Composite Quantile Regression Neural Network (SCQRNN)について述べる。
トレーニングにおいてアドホックソートを統合することで、SCQRNNは非交差量子化を保証するとともに、モデルの信頼性と解釈可能性を高める。
SCQRNNは、量子交差を防止し、計算複雑性を低減するだけでなく、従来のモデルよりも高速な収束を実現することを実証する。
この進歩は、持続的で正確な計算のための高性能コンピューティングの要求を満たす。
有機コンピューティングにおいて、SCQRNNは予測の不確実性による自己認識システムを強化し、金融、気象学、気候科学、工学にまたがる応用を充実させる。
関連論文リスト
- Coherent Feed Forward Quantum Neural Network [2.1178416840822027]
量子ニューラルネットワーク(QNN)に焦点をあてた量子機械学習は、いまだに膨大な研究分野である。
適応可能な中間層とノードの観点から,従来のFFNNの汎用性とシームレスに整合するボナフェイドQNNモデルを提案する。
本研究では,診断乳がん(Wisconsin)やクレジットカード不正検出データセットなど,さまざまなベンチマークデータセットを用いて提案モデルを検証した。
論文 参考訳(メタデータ) (2024-02-01T15:13:26Z) - Scale-Dropout: Estimating Uncertainty in Deep Neural Networks Using
Stochastic Scale [0.7025445595542577]
ニューラルネットワーク(NN)の不確実性推定は、特に安全クリティカルなアプリケーションにおいて、予測の信頼性と信頼性を向上させる上で不可欠である。
Dropoutを近似とするBayNNは、不確実性に対する体系的なアプローチを提供するが、本質的には、電力、メモリ、定量化の点で高いハードウェアオーバーヘッドに悩まされている。
提案するBayNNに対して,スピントロニクスメモリベースのCIMアーキテクチャを導入し,最先端技術と比較して100倍以上の省エネを実現した。
論文 参考訳(メタデータ) (2023-11-27T13:41:20Z) - Splitting and Parallelizing of Quantum Convolutional Neural Networks for
Learning Translationally Symmetric Data [0.0]
分割並列化QCNN(sp-QCNN)と呼ばれる新しいアーキテクチャを提案する。
量子回路を翻訳対称性に基づいて分割することにより、sp-QCNNはキュービット数を増やすことなく従来のQCNNを実質的に並列化することができる。
本稿では,sp-QCNNが従来のQCNNと同等の分類精度を達成でき,必要な測定資源を大幅に削減できることを示す。
論文 参考訳(メタデータ) (2023-06-12T18:00:08Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
我々は、逆向きに頑健な量子化ニューラルネットワーク(QNN)の訓練と証明の課題について検討する。
近年の研究では、浮動小数点ニューラルネットワークが量子化後の敵攻撃に対して脆弱であることが示されている。
本稿では、堅牢なQNNをトレーニングするための新しい方法であるQA-IBP(quantization-aware interval bound propagation)を提案する。
論文 参考訳(メタデータ) (2022-11-29T13:32:38Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Reservoir Computing via Quantum Recurrent Neural Networks [0.5999777817331317]
既存のVQCまたはQNNベースの手法は、量子回路パラメータの勾配に基づく最適化を行うために、かなりの計算資源を必要とする。
本研究では、量子リカレントニューラルネットワーク(QRNN-RC)に貯水池計算(RC)フレームワークを適用し、逐次モデリングにアプローチする。
数値シミュレーションにより、QRNN-RCは、複数の関数近似および時系列タスクに対して、完全に訓練されたQRNNモデルに匹敵する結果が得られることが示された。
論文 参考訳(メタデータ) (2022-11-04T17:30:46Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。