論文の概要: Regression and Classification with Single-Qubit Quantum Neural Networks
- arxiv url: http://arxiv.org/abs/2412.09486v1
- Date: Thu, 12 Dec 2024 17:35:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:34:37.140733
- Title: Regression and Classification with Single-Qubit Quantum Neural Networks
- Title(参考訳): 単一量子ニューラルネットワークによる回帰と分類
- Authors: Leandro C. Souza, Bruno C. Guingo, Gilson Giraldi, Renato Portugal,
- Abstract要約: 我々は、回帰処理と分類処理の両方にリソース効率が高くスケーラブルなSQQNN(Single-Qubit Quantum Neural Network)を使用する。
分類にはTaylor級数にインスパイアされた新しいトレーニング手法を導入する。
SQQNNは、MNISTデータセットを含む回帰および分類タスクにおいて、事実上エラーのない、強力なパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Since classical machine learning has become a powerful tool for developing data-driven algorithms, quantum machine learning is expected to similarly impact the development of quantum algorithms. The literature reflects a mutually beneficial relationship between machine learning and quantum computing, where progress in one field frequently drives improvements in the other. Motivated by the fertile connection between machine learning and quantum computing enabled by parameterized quantum circuits, we use a resource-efficient and scalable Single-Qubit Quantum Neural Network (SQQNN) for both regression and classification tasks. The SQQNN leverages parameterized single-qubit unitary operators and quantum measurements to achieve efficient learning. To train the model, we use gradient descent for regression tasks. For classification, we introduce a novel training method inspired by the Taylor series, which can efficiently find a global minimum in a single step. This approach significantly accelerates training compared to iterative methods. Evaluated across various applications, the SQQNN exhibits virtually error-free and strong performance in regression and classification tasks, including the MNIST dataset. These results demonstrate the versatility, scalability, and suitability of the SQQNN for deployment on near-term quantum devices.
- Abstract(参考訳): 古典的な機械学習は、データ駆動型アルゴリズムを開発するための強力なツールになっているため、量子機械学習も同様に量子アルゴリズムの開発に影響を与えることが期待されている。
この文献は、機械学習と量子コンピューティングの相互に有益な関係を反映している。
パラメータ化量子回路によって実現された機械学習と量子コンピューティングの肥大な接続により、回帰処理と分類処理の両方にリソース効率が高くスケーラブルな単一量子量子ニューラルネットワーク(SQQNN)を用いる。
SQQNNはパラメータ化された単一量子ビットのユニタリ演算子と量子計測を利用して効率的な学習を実現する。
モデルをトレーニングするために、回帰タスクに勾配降下を用いる。
分類にはTaylor級数にインスパイアされた新しいトレーニング手法を導入する。
このアプローチは反復法と比較してトレーニングを著しく加速する。
様々なアプリケーションで評価され、SQQNNは、MNISTデータセットを含む回帰および分類タスクにおいて、事実上エラーのない、強力なパフォーマンスを示す。
これらの結果は、短期量子デバイスへの展開において、SQQNNの汎用性、スケーラビリティ、適合性を示している。
関連論文リスト
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Discrete Randomized Smoothing Meets Quantum Computing [40.54768963869454]
重畳における入力バイナリデータの摂動をエンコードし、量子振幅推定(QAE)を用いてモデルへの呼び出し数を2次的に削減する方法を示す。
さらに、画像、グラフ、テキストに対するアプローチの広範な評価を可能にする新しいバイナリ脅威モデルを提案する。
論文 参考訳(メタデータ) (2024-08-01T20:21:52Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
我々は中性原子アナログ量子コンピュータの量子力学を利用してデータを処理する量子貯水池学習アルゴリズムを開発した。
アルゴリズムを実験的に実装し、機械学習タスクの様々なカテゴリで競合性能を達成する。
本研究は,従来の量子相関を有効機械学習に活用する可能性を示すものである。
論文 参考訳(メタデータ) (2024-07-02T18:00:00Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
本稿では,量子コンピューティングと機械学習アルゴリズムを統合する新しいアプローチであるQuantum-Train(QT)フレームワークを紹介する。
QTは、古典的なマッピングモデルと並んで量子ニューラルネットワークを利用することで、顕著な結果を得る。
論文 参考訳(メタデータ) (2024-05-18T14:35:57Z) - Splitting and Parallelizing of Quantum Convolutional Neural Networks for
Learning Translationally Symmetric Data [0.0]
分割並列化QCNN(sp-QCNN)と呼ばれる新しいアーキテクチャを提案する。
量子回路を翻訳対称性に基づいて分割することにより、sp-QCNNはキュービット数を増やすことなく従来のQCNNを実質的に並列化することができる。
本稿では,sp-QCNNが従来のQCNNと同等の分類精度を達成でき,必要な測定資源を大幅に削減できることを示す。
論文 参考訳(メタデータ) (2023-06-12T18:00:08Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Comparing concepts of quantum and classical neural network models for
image classification task [0.456877715768796]
本資料は、ハイブリッド量子古典ニューラルネットワークのトレーニングと性能に関する実験結果を含む。
シミュレーションは時間を要するが、量子ネットワークは時間を要するが、古典的なネットワークを克服する。
論文 参考訳(メタデータ) (2021-08-19T18:49:30Z) - Variational learning for quantum artificial neural networks [0.0]
まず、量子プロセッサ上での人工ニューロンとフィードフォワードニューラルネットワークの実装について、最近の一連の研究を概説する。
次に、変分アンサンプリングプロトコルに基づく効率的な個別量子ノードのオリジナル実現を提案する。
メモリ効率の高いフィードフォワードアーキテクチャとの完全な互換性を維持しながら、単一ニューロンの活性化確率を決定するのに必要な量子回路深さを効果的に削減する。
論文 参考訳(メタデータ) (2021-03-03T16:10:15Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
超低遅延アプリケーションのためのニューラルネットワークのトレーニング中の分級と量子化の相互作用を研究します。
量子化アウェアプルーニングは,タスクのプルーニングや量子化のみよりも計算効率のよいモデルであることが判明した。
論文 参考訳(メタデータ) (2021-02-22T19:00:05Z) - Recurrent Quantum Neural Networks [7.6146285961466]
リカレントニューラルネットワークは、機械学習における多くのシーケンス対シーケンスモデルの基盤となっている。
非自明なタスクに対して実証可能な性能を持つ量子リカレントニューラルネットワーク(QRNN)を構築する。
我々はQRNNをMNIST分類で評価し、QRNNに各画像ピクセルを供給し、また、最新のデータ拡張を前処理のステップとして利用する。
論文 参考訳(メタデータ) (2020-06-25T17:59:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。