論文の概要: ADEP: A Novel Approach Based on Discriminator-Enhanced Encoder-Decoder Architecture for Accurate Prediction of Adverse Effects in Polypharmacy
- arxiv url: http://arxiv.org/abs/2406.00118v1
- Date: Fri, 31 May 2024 18:20:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 08:33:32.413105
- Title: ADEP: A Novel Approach Based on Discriminator-Enhanced Encoder-Decoder Architecture for Accurate Prediction of Adverse Effects in Polypharmacy
- Title(参考訳): ADEP: 判別器強化エンコーダデコーダアーキテクチャに基づく多薬効の逆効果の高精度予測のための新しいアプローチ
- Authors: Katayoun Kobraei, Mehrdad Baradaran, Seyed Mohsen Sadeghi, Raziyeh Masumshah, Changiz Eslahchi,
- Abstract要約: 本稿では,識別器とエンコーダデコーダモデルを組み合わせた新しい手法であるADEPを紹介する。
ADEPは多薬効の悪影響を予測するために、複数の分類方法を含む3部モデルを採用している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivation: Unanticipated drug-drug interactions (DDIs) pose significant risks in polypharmacy, emphasizing the need for predictive methods. Recent advancements in computational techniques aim to address this challenge. Methods: We introduce ADEP, a novel approach integrating a discriminator and an encoder-decoder model to address data sparsity and enhance feature extraction. ADEP employs a three-part model, including multiple classification methods, to predict adverse effects in polypharmacy. Results: Evaluation on benchmark datasets shows ADEP outperforms well-known methods such as GGI-DDI, SSF-DDI, LSFC, DPSP, GNN-DDI, MSTE, MDF-SA-DDI, NNPS, DDIMDL, Random Forest, K-Nearest-Neighbor, Logistic Regression, and Decision Tree. Key metrics include Accuracy, AUROC, AUPRC, F-score, Recall, Precision, False Negatives, and False Positives. ADEP achieves more accurate predictions of adverse effects in polypharmacy. A case study with real-world data illustrates ADEP's practical application in identifying potential DDIs and preventing adverse effects. Conclusions: ADEP significantly advances the prediction of polypharmacy adverse effects, offering improved accuracy and reliability. Its innovative architecture enhances feature extraction from sparse medical data, improving medication safety and patient outcomes. Availability: Source code and datasets are available at https://github.com/m0hssn/ADEP.
- Abstract(参考訳): モチベーション(Motivation):予想外の薬物・薬物相互作用(DDIs)は多薬局に重大なリスクをもたらし、予測方法の必要性を強調している。
近年の計算技術の進歩は、この問題に対処することを目指している。
方法: 識別器とエンコーダデコーダモデルを組み合わせた新しい手法であるADEPを導入する。
ADEPは多薬効の悪影響を予測するために、複数の分類方法を含む3部モデルを採用している。
GGI-DDI, SSF-DDI, LSFC, DPSP, GNN-DDI, MSTE, MDF-SA-DDI, NNPS, DDIMDL, Random Forest, K-Nearest-Neighbor, Logistic Regression, Decision Tree など,ADEPはよく知られた手法より優れている。
主な指標は、精度、AUROC、AUPRC、Fスコア、リコール、精度、偽陰性、偽陽性である。
ADEPは多剤の副作用をより正確に予測する。
実世界のデータを用いたケーススタディでは、ADEPが潜在的なDDIを特定し、副作用を予防する実践的な応用を示している。
結論:ADEPは多剤副作用の予測を大幅に進歩させ、精度と信頼性を向上させた。
その革新的なアーキテクチャは、スパース医療データからの特徴抽出を強化し、医薬品の安全性と患者の結果を改善する。
可用性: ソースコードとデータセットはhttps://github.com/m0hssn/ADEP.orgで公開されている。
関連論文リスト
- Geodesic Optimization for Predictive Shift Adaptation on EEG data [53.58711912565724]
ドメイン適応メソッドは、$X$と$y$で分散シフトが同時に発生したときに苦労する。
本稿では,GOPSA(Geodesic Optimization for Predictive Shift Adaptation)と呼ばれる新しい手法を提案する。
GOPSAは、脳波のバイオメディカル応用のための混合効果モデリングと機械学習を併用する可能性を持っている。
論文 参考訳(メタデータ) (2024-07-04T12:15:42Z) - Learning to Describe for Predicting Zero-shot Drug-Drug Interactions [54.172575323610175]
薬物と薬物の相互作用は同時投与の有効性を損なう可能性がある。
従来のDDI予測の計算手法では、知識不足のため、新しい薬物の相互作用を捉えることができない可能性がある。
言語モデルに基づくDDI予測器と強化学習(RL)に基づく情報セレクタを用いたテキストDDIを提案する。
論文 参考訳(メタデータ) (2024-03-13T09:42:46Z) - DR-VIDAL -- Doubly Robust Variational Information-theoretic Deep
Adversarial Learning for Counterfactual Prediction and Treatment Effect
Estimation on Real World Data [7.712429926730386]
因果深い学習は、個別化された治療効果を推定する伝統的な手法よりも改善された。
DR-VIDALは治療と結果の2つのジョイントモデルを組み合わせた新しい生成フレームワークである。
DR-VIDALは、合成および実世界のデータセットにおいて、他の生成的および生成的手法よりも優れた性能を達成する。
論文 参考訳(メタデータ) (2023-03-07T19:44:58Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
Annotations [90.27736364704108]
我々は、AI支援薬物発見のための体系的なOODデータセットキュレーターおよびベンチマークであるTarmOODを提案する。
DrugOODには、ベンチマークプロセスを完全に自動化するオープンソースのPythonパッケージが付属している。
我々は、薬物標的結合親和性予測という、AIDDにおける最も重要な問題の1つに焦点を当てる。
論文 参考訳(メタデータ) (2022-01-24T12:32:48Z) - Can uncertainty boost the reliability of AI-based diagnostic methods in
digital pathology? [3.8424737607413157]
デジタル病理学におけるDL予測の不確実性予測を付加すると,臨床応用の価値が増大する可能性が示唆された。
モデル統合手法(MCドロップアウトとディープアンサンブル)の有効性をモデル非依存アプローチと比較した。
以上の結果から,不確実性推定はある程度の信頼性を高め,分類しきい値選択に対する感度を低下させる可能性が示唆された。
論文 参考訳(メタデータ) (2021-12-17T10:10:00Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - BridgeDPI: A Novel Graph Neural Network for Predicting Drug-Protein
Interactions [18.242888464394575]
本稿では,新しいディープラーニングフレームワークであるBridgeDPIを提案する。
ハイパーノードと呼ばれるノードのクラスを導入し、PPAやDDAとして機能するさまざまなタンパク質/薬物を橋渡しします。
3つの実世界のデータセットにおいて、BridgeDPIが最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-01-29T12:53:39Z) - AttentionDDI: Siamese Attention-based Deep Learning method for drug-drug
interaction predictions [0.9176056742068811]
薬物と薬物の相互作用(DDIs)は、2つ以上の薬物の投与によって引き起こされるプロセスを指し、薬物が自分自身によって投与されるときに観察されるものを超える副作用をもたらす。
大量の薬物対が存在するため、すべての組み合わせを実験的にテストし、以前は観測されていなかった副作用を発見することはほとんど不可能である。
本稿では,複数の薬物類似度尺度を統合するddi予測のためのsiamese self-attention multi-modal neural networkを提案する。
論文 参考訳(メタデータ) (2020-12-24T13:33:07Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。