論文の概要: FedConv: Enhancing Convolutional Neural Networks for Handling Data
Heterogeneity in Federated Learning
- arxiv url: http://arxiv.org/abs/2310.04412v1
- Date: Fri, 6 Oct 2023 17:57:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-09 12:40:14.848957
- Title: FedConv: Enhancing Convolutional Neural Networks for Handling Data
Heterogeneity in Federated Learning
- Title(参考訳): FedConv: フェデレーション学習におけるデータ不均一性処理のための畳み込みニューラルネットワークの強化
- Authors: Peiran Xu, Zeyu Wang, Jieru Mei, Liangqiong Qu, Alan Yuille, Cihang
Xie, Yuyin Zhou
- Abstract要約: フェデレーション・ラーニング(FL)は機械学習における新たなパラダイムであり、共有モデルは複数のデバイスからのデータを使って協調的に学習される。
活性化関数や正規化層などの異なるアーキテクチャ要素が異種FLの性能に与える影響を系統的に検討する。
以上の結果から,戦略的アーキテクチャ変更により,純粋なCNNは,VTと一致するか,あるいは超えるようなロバスト性を達成できることが示唆された。
- 参考スコア(独自算出の注目度): 34.37155882617201
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is an emerging paradigm in machine learning, where a
shared model is collaboratively learned using data from multiple devices to
mitigate the risk of data leakage. While recent studies posit that Vision
Transformer (ViT) outperforms Convolutional Neural Networks (CNNs) in
addressing data heterogeneity in FL, the specific architectural components that
underpin this advantage have yet to be elucidated. In this paper, we
systematically investigate the impact of different architectural elements, such
as activation functions and normalization layers, on the performance within
heterogeneous FL. Through rigorous empirical analyses, we are able to offer the
first-of-its-kind general guidance on micro-architecture design principles for
heterogeneous FL.
Intriguingly, our findings indicate that with strategic architectural
modifications, pure CNNs can achieve a level of robustness that either matches
or even exceeds that of ViTs when handling heterogeneous data clients in FL.
Additionally, our approach is compatible with existing FL techniques and
delivers state-of-the-art solutions across a broad spectrum of FL benchmarks.
The code is publicly available at https://github.com/UCSC-VLAA/FedConv
- Abstract(参考訳): フェデレーション学習(federated learning, fl)は、複数のデバイスからのデータを使用して共有モデルを共同学習し、データ漏洩のリスクを軽減する、機械学習の新たなパラダイムである。
最近の研究は、ビジョントランスフォーマー(ViT)がFLにおけるデータの不均一性に対処する上で、畳み込みニューラルネットワーク(CNN)よりも優れていることを示唆している。
本稿では,活性化関数や正規化層などの異なるアーキテクチャ要素が異種FLの性能に与える影響を系統的に検討する。
厳密な経験的分析を通じて、異種FLのマイクロアーキテクチャ設計原理に関する一級一般ガイダンスを提供することができる。
興味深いことに、われわれの研究結果は、戦略的アーキテクチャ変更によって純粋なCNNは、FLにおける異種データクライアントの処理において、VTと一致またはそれ以上の堅牢性を達成できることを示している。
さらに,本手法は既存のFL技術と互換性があり,FLベンチマークの幅広い範囲に最先端のソリューションを提供する。
コードはhttps://github.com/UCSC-VLAA/FedConvで公開されている。
関連論文リスト
- Can We Theoretically Quantify the Impacts of Local Updates on the Generalization Performance of Federated Learning? [50.03434441234569]
フェデレートラーニング(FL)は、直接データ共有を必要とせず、さまざまなサイトで機械学習モデルをトレーニングする効果により、大きな人気を集めている。
局所的な更新を伴うFLは通信効率のよい分散学習フレームワークであることが様々なアルゴリズムによって示されているが、局所的な更新によるFLの一般化性能は比較的低い。
論文 参考訳(メタデータ) (2024-09-05T19:00:18Z) - Non-Federated Multi-Task Split Learning for Heterogeneous Sources [17.47679789733922]
異種データソースのマルチタスク学習を効率的に行うための新しいアーキテクチャと方法論を提案する。
MTSLは,サーバとクライアントの学習率を調整することで,高速収束を実現することができることを示す。
論文 参考訳(メタデータ) (2024-05-31T19:27:03Z) - FLIGAN: Enhancing Federated Learning with Incomplete Data using GAN [1.5749416770494706]
Federated Learning (FL)は、ネットワークデバイス上での機械学習モデルの分散トレーニングのためのプライバシ保護メカニズムを提供する。
本稿では,FLにおけるデータ不完全性問題に対処する新しいアプローチであるFLIGANを提案する。
本手法はFLのプライバシ要件に則り,プロセス内の実際のデータを共有せずに合成データをフェデレートした方法で生成する。
論文 参考訳(メタデータ) (2024-03-25T16:49:38Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH (Federated Learning Across Simultaneous Heterogeneities) は軽量かつ柔軟なクライアント選択アルゴリズムである。
ヘテロジニティの幅広い情報源の下で、最先端のFLフレームワークよりも優れています。
最先端のベースラインよりも大幅に、一貫性のある改善を実現している。
論文 参考訳(メタデータ) (2024-02-13T20:04:39Z) - FedLPS: Heterogeneous Federated Learning for Multiple Tasks with Local
Parameter Sharing [14.938531944702193]
局所異種共有を用いたフェデレーション学習(FedLPS)を提案する。
FedLPSは転送学習を使用して、ローカルモデルを共有エンコーダとタスク固有のエンコーダに分割することで、複数のタスクをひとつのデバイスにデプロイする。
FedLPSは最先端(SOTA)のFLフレームワークを最大4.88%上回り、計算資源消費量を21.3%減らす。
論文 参考訳(メタデータ) (2024-02-13T16:30:30Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
コンセンサス指向生成による連合学習(FedCOG)を提案する。
FedCOGは、補完的なデータ生成と知識蒸留に基づくモデルトレーニングという、クライアント側の2つの重要なコンポーネントで構成されています。
古典的および実世界のFLデータセットの実験は、FedCOGが一貫して最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2023-12-10T18:49:59Z) - Handling Data Heterogeneity via Architectural Design for Federated
Visual Recognition [16.50490537786593]
4つのFLデータセットを用いて、5つの異なるアーキテクチャファミリからの19の視覚認識モデルについて検討する。
本研究は,現実的なシナリオにおけるコンピュータビジョンタスクにおけるアーキテクチャ設計の重要性を強調した。
論文 参考訳(メタデータ) (2023-10-23T17:59:16Z) - FS-Real: Towards Real-World Cross-Device Federated Learning [60.91678132132229]
Federated Learning (FL)は、ローカルデータをアップロードすることなく、分散クライアントと協調して高品質なモデルをトレーニングすることを目的としている。
FL研究と実世界のシナリオの間には依然としてかなりのギャップがあり、主に異種デバイスの特徴とそのスケールによって引き起こされている。
本稿では,実世界横断デバイスFL,FS-Realのための効率的でスケーラブルなプロトタイピングシステムを提案する。
論文 参考訳(メタデータ) (2023-03-23T15:37:17Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
フェデレートラーニング(FL)は、モバイルエッジネットワークで機械学習モデルを分散的にトレーニングするために使用することができる。
最近のFLは、モデルに依存しないメタラーニング(MAML)フレームワークで解釈されている。
本稿は,MAMLがFLにもたらすメリットと,モバイルエッジネットワーク上でのメリットの最大化について論じる。
論文 参考訳(メタデータ) (2023-03-23T02:42:10Z) - Rethinking Architecture Design for Tackling Data Heterogeneity in
Federated Learning [53.73083199055093]
注意に基づくアーキテクチャ(例えばTransformers)は、分散シフトに対してかなり堅牢であることを示す。
我々の実験は、畳み込みネットワークをトランスフォーマーに置き換えることによって、過去のデバイスを壊滅的に忘れることを大幅に減らせることを示した。
論文 参考訳(メタデータ) (2021-06-10T21:04:18Z) - On the Impact of Device and Behavioral Heterogeneity in Federated
Learning [5.038980064083677]
フェデレーション学習(fl)は、非信頼エンティティが所有する分散プライベートデータセット上での協調学習のための一般的なパラダイムになりつつある。
本稿では,多くの異種データセット,デバイス,ネットワーク上でのトレーニングを行う課題について述べる。
5つのFLベンチマークで1.5Kのユニークな構成にまたがる経験的研究を行った。
論文 参考訳(メタデータ) (2021-02-15T12:04:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。