論文の概要: A Review of Pulse-Coupled Neural Network Applications in Computer Vision and Image Processing
- arxiv url: http://arxiv.org/abs/2406.00239v1
- Date: Sat, 1 Jun 2024 00:10:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 08:04:10.319470
- Title: A Review of Pulse-Coupled Neural Network Applications in Computer Vision and Image Processing
- Title(参考訳): パルス結合型ニューラルネットワークのコンピュータビジョンと画像処理への応用
- Authors: Nurul Rafi, Pablo Rivas,
- Abstract要約: パルス結合型ニューラルネットワーク(PCNN)は,いくつかの基本的な画像処理とコンピュータビジョンの課題に対処することに成功した。
これらのアプリケーションで得られた結果は、PCNNアーキテクチャが様々なコンピュータビジョンタスクに関連する有用な知覚情報を生成することを示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Research in neural models inspired by mammal's visual cortex has led to many spiking neural networks such as pulse-coupled neural networks (PCNNs). These models are oscillating, spatio-temporal models stimulated with images to produce several time-based responses. This paper reviews PCNN's state of the art, covering its mathematical formulation, variants, and other simplifications found in the literature. We present several applications in which PCNN architectures have successfully addressed some fundamental image processing and computer vision challenges, including image segmentation, edge detection, medical imaging, image fusion, image compression, object recognition, and remote sensing. Results achieved in these applications suggest that the PCNN architecture generates useful perceptual information relevant to a wide variety of computer vision tasks.
- Abstract(参考訳): 哺乳類の視覚野にインスパイアされた神経モデルの研究は、パルス結合ニューラルネットワーク(PCNN)のような多くのスパイク神経ネットワークにつながった。
これらのモデルは振動する時空間モデルであり、画像によって刺激され、いくつかの時間ベースの応答を生成する。
本稿はPCNNの最先端技術について概説し、その数学的定式化、変種、および文献に見られるその他の単純化について述べる。
我々は,PCNNアーキテクチャが画像分割,エッジ検出,医用画像,画像融合,画像圧縮,物体認識,リモートセンシングなど,基本的な画像処理とコンピュータビジョンの課題にうまく取り組んできたアプリケーションをいくつか提示する。
これらのアプリケーションで得られた結果は、PCNNアーキテクチャが様々なコンピュータビジョンタスクに関連する有用な知覚情報を生成することを示唆している。
関連論文リスト
- Image segmentation with traveling waves in an exactly solvable recurrent
neural network [71.74150501418039]
繰り返しニューラルネットワークは、シーンの構造特性に応じて、画像をグループに効果的に分割できることを示す。
本稿では,このネットワークにおけるオブジェクトセグメンテーションのメカニズムを正確に記述する。
次に、グレースケール画像中の単純な幾何学的対象から自然画像まで、入力をまたいで一般化するオブジェクトセグメンテーションの簡単なアルゴリズムを実証する。
論文 参考訳(メタデータ) (2023-11-28T16:46:44Z) - DQNAS: Neural Architecture Search using Reinforcement Learning [6.33280703577189]
畳み込みニューラルネットワークは様々な画像関連アプリケーションで使われている。
本稿では,強化学習の原則を取り入れた,ニューラルネットワークの自動探索フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-17T04:01:47Z) - Convolutional Neural Generative Coding: Scaling Predictive Coding to
Natural Images [79.07468367923619]
畳み込み型神経生成符号化(Conv-NGC)を開発した。
我々は、潜伏状態マップを段階的に洗練する柔軟な神経生物学的動機付けアルゴリズムを実装した。
本研究は,脳にインスパイアされたニューラル・システムによる再建と画像復調の課題に対する効果について検討する。
論文 参考訳(メタデータ) (2022-11-22T06:42:41Z) - Understanding the Influence of Receptive Field and Network Complexity in
Neural-Network-Guided TEM Image Analysis [0.0]
透過電子顕微鏡(TEM)画像において,ニューラルネットワークのアーキテクチャ選択がニューラルネットワークセグメントに与える影響を系統的に検討した。
背景からナノ粒子を区別するために振幅コントラストに依存した低分解能TEM画像の場合、受容場はセグメンテーション性能に有意な影響を与えない。
一方、ナノ粒子を識別するために振幅と位相コントラストの組合せに依存する高分解能TEM画像では、受容場が性能向上の鍵となるパラメータである。
論文 参考訳(メタデータ) (2022-04-08T18:45:15Z) - The Spectral Bias of Polynomial Neural Networks [63.27903166253743]
PNN(Polynomial Neural Network)は、高頻度情報を重要視する画像生成と顔認識に特に有効であることが示されている。
これまでの研究では、ニューラルネットワークが低周波関数に対して$textitspectral bias$を示しており、トレーニング中に低周波成分のより高速な学習をもたらすことが示されている。
このような研究に触発されて、我々はPNNのTangent Kernel(NTK)のスペクトル分析を行う。
我々は、最近提案されたPNNのパラメトリゼーションである$Pi$-Netファミリがスピードアップすることを発見した。
論文 参考訳(メタデータ) (2022-02-27T23:12:43Z) - Self-Denoising Neural Networks for Few Shot Learning [66.38505903102373]
既存のニューラルアーキテクチャの複数の段階でノイズを追加すると同時に、この付加ノイズに対して堅牢であるように学習する新しいトレーニングスキームを提案する。
このアーキテクチャは、SDNN(Self-Denoising Neural Network)と呼ばれ、現代の畳み込みニューラルネットワークに容易に適用できます。
論文 参考訳(メタデータ) (2021-10-26T03:28:36Z) - Convolutional Neural Networks in Orthodontics: a review [10.334172684650632]
畳み込みニューラルネットワーク(CNN)はコンピュータビジョンの多くの領域で使われている。
このレビューは、歯科の分野の一つにCNNの適用を提示 - 矯正。
論文 参考訳(メタデータ) (2021-04-18T16:02:30Z) - Continuous Emotion Recognition with Spatiotemporal Convolutional Neural
Networks [82.54695985117783]
In-theld でキャプチャした長いビデオシーケンスを用いて,持続的な感情認識のための最先端のディープラーニングアーキテクチャの適合性を検討する。
我々は,2D-CNNと長期記憶ユニットを組み合わせた畳み込みリカレントニューラルネットワークと,2D-CNNモデルの微調整時の重みを膨らませて構築した膨らませた3D-CNNモデルを開発した。
論文 参考訳(メタデータ) (2020-11-18T13:42:05Z) - 11 TeraFLOPs per second photonic convolutional accelerator for deep
learning optical neural networks [0.0]
10 TeraFLOPS(1秒あたりの浮動小数点演算)を超える全光ベクトル畳み込み加速器を実証する。
次に、同じハードウェアを用いて、10個の出力ニューロンを持つ深部光学CNNを逐次形成し、900ピクセルの手書き数字画像と88%の精度で完全な10桁の認識を成功させる。
このアプローチはスケーラブルで、無人車やリアルタイムビデオ認識のような要求のあるアプリケーションのために、より複雑なネットワークに対してトレーニング可能である。
論文 参考訳(メタデータ) (2020-11-14T21:24:01Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z) - MVC-Net: A Convolutional Neural Network Architecture for Manifold-Valued
Images With Applications [5.352699766206807]
本稿では,MVC層を用いた多層ニューラルネットワークの構築方法について述べる。
医用画像およびコンピュータビジョンタスクにおけるMVC-netの優れた性能を実証的に示す。
論文 参考訳(メタデータ) (2020-03-02T22:37:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。