Controlling Large Language Model Agents with Entropic Activation Steering
- URL: http://arxiv.org/abs/2406.00244v1
- Date: Sat, 1 Jun 2024 00:25:00 GMT
- Title: Controlling Large Language Model Agents with Entropic Activation Steering
- Authors: Nate Rahn, Pierluca D'Oro, Marc G. Bellemare,
- Abstract summary: We study how large language models (LLMs) form and act on beliefs by conducting experiments in controlled sequential decision-making tasks.
We show that LLM agents are overconfident: They draw strong conclusions about what to do based on insufficient evidence, resulting in inadequately explorative behavior.
We introduce Entropic Activation Steering (EAST), an activation steering method for in-context LLM agents.
- Score: 20.56909601159833
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The generality of pretrained large language models (LLMs) has prompted increasing interest in their use as in-context learning agents. To be successful, such agents must form beliefs about how to achieve their goals based on limited interaction with their environment, resulting in uncertainty about the best action to take at each step. In this paper, we study how LLM agents form and act on these beliefs by conducting experiments in controlled sequential decision-making tasks. To begin, we find that LLM agents are overconfident: They draw strong conclusions about what to do based on insufficient evidence, resulting in inadequately explorative behavior. We dig deeper into this phenomenon and show how it emerges from a collapse in the entropy of the action distribution implied by sampling from the LLM. We then demonstrate that existing token-level sampling techniques are by themselves insufficient to make the agent explore more. Motivated by this fact, we introduce Entropic Activation Steering (EAST), an activation steering method for in-context LLM agents. EAST computes a steering vector as an entropy-weighted combination of representations, and uses it to manipulate an LLM agent's uncertainty over actions by intervening on its activations during the forward pass. We show that EAST can reliably increase the entropy in an LLM agent's actions, causing more explorative behavior to emerge. Finally, EAST modifies the subjective uncertainty an LLM agent expresses, paving the way to interpreting and controlling how LLM agents represent uncertainty about their decisions.
Related papers
- SAND: Boosting LLM Agents with Self-Taught Action Deliberation [53.732649189709285]
Large Language Model (LLM) agents are commonly tuned with supervised finetuning on ReAct-style expert trajectories or preference optimization over pairwise rollouts.<n>We propose Self-taught ActioN Deliberation (SAND) framework, enabling LLM agents to explicitly deliberate over candidate actions before committing to one.<n>SAND achieves an average 20% improvement over initial supervised finetuning and also outperforms state-of-the-art agent tuning approaches.
arXiv Detail & Related papers (2025-07-10T05:38:15Z) - LLMs for sensory-motor control: Combining in-context and iterative learning [0.0]
We propose a method that enables large language models to control embodied agents by directly mapping continuous observation vectors to continuous action vectors.<n>The method is validated on classic control tasks from the Gymnasium library and the inverted pendulum task from the MuJoCo library.
arXiv Detail & Related papers (2025-06-05T10:38:28Z) - Improving Reasoning Performance in Large Language Models via Representation Engineering [2.0099933815960256]
We propose a representation engineering approach for large language models (LLMs)
Model activations are read from the residual stream of an LLM when processing a reasoning task.
We show that an LLM can, to a certain degree, be controlled to improve its perceived reasoning ability by modulating activations.
arXiv Detail & Related papers (2025-04-28T04:58:43Z) - Prompting is Not All You Need! Evaluating LLM Agent Simulation Methodologies with Real-World Online Customer Behavior Data [62.61900377170456]
We focus on evaluating LLM's objective accuracy'' rather than the subjective believability'' in simulating human behavior.<n>We present the first comprehensive evaluation of state-of-the-art LLMs on the task of web shopping action generation.
arXiv Detail & Related papers (2025-03-26T17:33:27Z) - LLM-Mediated Guidance of MARL Systems [3.5471755479440055]
In complex multi-agent environments, achieving efficient learning and desirable behaviours is a challenge for Multi-Agent Reinforcement Learning systems.
This work explores the potential of combining MARL with Large Language Model (LLM)-mediated interventions to guide agents toward more desirable behaviours.
arXiv Detail & Related papers (2025-03-16T20:16:13Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.
Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.
We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - Identifying and Manipulating Personality Traits in LLMs Through Activation Engineering [0.0]
This study builds on the novel approach of "activation engineering"
We leverage activation engineering to develop a method for identifying and adjusting activation directions related to personality traits.
arXiv Detail & Related papers (2024-12-10T23:15:25Z) - CogSteer: Cognition-Inspired Selective Layer Intervention for Efficiently Steering Large Language Models [37.476241509187304]
Large Language Models (LLMs) achieve remarkable performance through pretraining on extensive data.
The lack of interpretability in their underlying mechanisms limits the ability to effectively steer LLMs for specific applications.
In this work, we investigate the mechanisms of LLMs from a cognitive perspective using eye movement measures.
arXiv Detail & Related papers (2024-10-23T09:40:15Z) - SAC-GLAM: Improving Online RL for LLM agents with Soft Actor-Critic and Hindsight Relabeling [29.29604779151457]
This paper presents and studies an adaptation of Soft Actor-Critic and hindsight relabeling to LLM agents.
Our method paves the path towards autotelic LLM agents that learn online but can also outperform on-policy methods in more classic multi-goal RL environments.
arXiv Detail & Related papers (2024-10-16T11:59:27Z) - CtrlA: Adaptive Retrieval-Augmented Generation via Inherent Control [26.21425058462886]
Retrieval-augmented generation (RAG) has emerged as a promising solution for mitigating hallucinations of large language models (LLMs) with retrieved external knowledge.
We present the first attempts to solve adaptive RAG from a representation perspective and develop an inherent control-based framework, termed name.
Experiments show that name is superior to existing adaptive RAG methods on a diverse set of tasks.
arXiv Detail & Related papers (2024-05-29T03:17:16Z) - The Strong Pull of Prior Knowledge in Large Language Models and Its Impact on Emotion Recognition [74.04775677110179]
In-context Learning (ICL) has emerged as a powerful paradigm for performing natural language tasks with Large Language Models (LLM)
We show that LLMs have strong yet inconsistent priors in emotion recognition that ossify their predictions.
Our results suggest that caution is needed when using ICL with larger LLMs for affect-centered tasks outside their pre-training domain.
arXiv Detail & Related papers (2024-03-25T19:07:32Z) - Empowering Large Language Model Agents through Action Learning [85.39581419680755]
Large Language Model (LLM) Agents have recently garnered increasing interest yet they are limited in their ability to learn from trial and error.
We argue that the capacity to learn new actions from experience is fundamental to the advancement of learning in LLM agents.
We introduce a framework LearnAct with an iterative learning strategy to create and improve actions in the form of Python functions.
arXiv Detail & Related papers (2024-02-24T13:13:04Z) - Formally Specifying the High-Level Behavior of LLM-Based Agents [24.645319505305316]
LLMs have emerged as promising tools for solving challenging problems without the need for task-specific finetuned models.
Currently, the design and implementation of such agents is ad hoc, as the wide variety of tasks that LLM-based agents may be applied to naturally means there can be no one-size-fits-all approach to agent design.
We propose a minimalistic generation framework that simplifies the process of building agents.
arXiv Detail & Related papers (2023-10-12T17:24:15Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.
Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z) - ExpeL: LLM Agents Are Experiential Learners [60.54312035818746]
We introduce the Experiential Learning (ExpeL) agent to allow learning from agent experiences without requiring parametric updates.
Our agent autonomously gathers experiences and extracts knowledge using natural language from a collection of training tasks.
At inference, the agent recalls its extracted insights and past experiences to make informed decisions.
arXiv Detail & Related papers (2023-08-20T03:03:34Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
Large Language Models (LLMs) are becoming increasingly smart and autonomous, targeting real-world pragmatic missions beyond traditional NLP tasks.
We present AgentBench, a benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities.
arXiv Detail & Related papers (2023-08-07T16:08:11Z) - Do Embodied Agents Dream of Pixelated Sheep: Embodied Decision Making
using Language Guided World Modelling [101.59430768507997]
Reinforcement learning (RL) agents typically learn tabula rasa, without prior knowledge of the world.
We propose using few-shot large language models (LLMs) to hypothesize an Abstract World Model (AWM)
Our method of hypothesizing an AWM with LLMs and then verifying the AWM based on agent experience not only increases sample efficiency over contemporary methods by an order of magnitude.
arXiv Detail & Related papers (2023-01-28T02:04:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.