A Structured Review of Literature on Uncertainty in Machine Learning & Deep Learning
- URL: http://arxiv.org/abs/2406.00332v1
- Date: Sat, 1 Jun 2024 07:17:38 GMT
- Title: A Structured Review of Literature on Uncertainty in Machine Learning & Deep Learning
- Authors: Fahimeh Fakour, Ali Mosleh, Ramin Ramezani,
- Abstract summary: We focus on a critical concern for adaptation of Machine Learning in risk-sensitive applications, namely understanding and quantifying uncertainty.
Our paper approaches this topic in a structured way, providing a review of the literature in the various facets that uncertainty is enveloped in the ML process.
Key contributions in this review are broadening the scope of uncertainty discussion, as well as an updated review of uncertainty quantification methods in Deep Learning.
- Score: 0.8667724053232616
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The adaptation and use of Machine Learning (ML) in our daily lives has led to concerns in lack of transparency, privacy, reliability, among others. As a result, we are seeing research in niche areas such as interpretability, causality, bias and fairness, and reliability. In this survey paper, we focus on a critical concern for adaptation of ML in risk-sensitive applications, namely understanding and quantifying uncertainty. Our paper approaches this topic in a structured way, providing a review of the literature in the various facets that uncertainty is enveloped in the ML process. We begin by defining uncertainty and its categories (e.g., aleatoric and epistemic), understanding sources of uncertainty (e.g., data and model), and how uncertainty can be assessed in terms of uncertainty quantification techniques (Ensembles, Bayesian Neural Networks, etc.). As part of our assessment and understanding of uncertainty in the ML realm, we cover metrics for uncertainty quantification for a single sample, dataset, and metrics for accuracy of the uncertainty estimation itself. This is followed by discussions on calibration (model and uncertainty), and decision making under uncertainty. Thus, we provide a more complete treatment of uncertainty: from the sources of uncertainty to the decision-making process. We have focused the review of uncertainty quantification methods on Deep Learning (DL), while providing the necessary background for uncertainty discussion within ML in general. Key contributions in this review are broadening the scope of uncertainty discussion, as well as an updated review of uncertainty quantification methods in DL.
Related papers
- A Survey of Uncertainty Estimation in LLMs: Theory Meets Practice [7.687545159131024]
We clarify the definitions of uncertainty and confidence, highlighting their distinctions and implications for model predictions.
We categorize various classes of uncertainty estimation methods derived from approaches.
We also explore techniques for uncertainty into diverse applications, including out-of-distribution detection, data annotation, and question clarification.
arXiv Detail & Related papers (2024-10-20T07:55:44Z) - MAQA: Evaluating Uncertainty Quantification in LLMs Regarding Data Uncertainty [10.154013836043816]
We propose a new Multi-Answer Question Answering dataset, MAQA, consisting of world knowledge, mathematical reasoning, and commonsense reasoning tasks.
Our findings show that entropy and consistency-based methods estimate the model uncertainty well even under data uncertainty.
We believe our observations will pave the way for future work on uncertainty quantification in realistic setting.
arXiv Detail & Related papers (2024-08-13T11:17:31Z) - Label-wise Aleatoric and Epistemic Uncertainty Quantification [15.642370299038488]
We present a novel approach to uncertainty quantification in classification tasks based on label-wise decomposition of uncertainty measures.
We show that our proposed measures adhere to a number of desirable properties.
arXiv Detail & Related papers (2024-06-04T14:33:23Z) - Uncertainty Estimation and Quantification for LLMs: A Simple Supervised Approach [6.209293868095268]
We study the problem of uncertainty estimation and calibration for LLMs.
We propose a supervised approach that leverages labeled datasets to estimate the uncertainty in LLMs' responses.
Our method is easy to implement and adaptable to different levels of model accessibility including black box, grey box, and white box.
arXiv Detail & Related papers (2024-04-24T17:10:35Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
We propose a new estimation method by actively de-noising the observed data.
By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.
arXiv Detail & Related papers (2023-12-16T14:59:11Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Uncertainty in Natural Language Processing: Sources, Quantification, and
Applications [56.130945359053776]
We provide a comprehensive review of uncertainty-relevant works in the NLP field.
We first categorize the sources of uncertainty in natural language into three types, including input, system, and output.
We discuss the challenges of uncertainty estimation in NLP and discuss potential future directions.
arXiv Detail & Related papers (2023-06-05T06:46:53Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
We argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions.
We describe how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems.
This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness.
arXiv Detail & Related papers (2020-11-15T17:26:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.