論文の概要: Learning Causal Abstractions of Linear Structural Causal Models
- arxiv url: http://arxiv.org/abs/2406.00394v1
- Date: Sat, 1 Jun 2024 10:42:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 07:15:00.926659
- Title: Learning Causal Abstractions of Linear Structural Causal Models
- Title(参考訳): 線形構造因果モデルの因果的抽象化の学習
- Authors: Riccardo Massidda, Sara Magliacane, Davide Bacciu,
- Abstract要約: 因果抽象化(Causal Abstraction)は、2つの構造因果モデルを異なるレベルの詳細で定式化するフレームワークを提供する。
線形抽象関数を持つ線形因果モデルに対する両問題に対処する。
特にAbs-LiNGAMは,学習された高レベルモデルと抽象関数によって引き起こされる制約を利用して,より大規模な低レベルモデルの回復を高速化する手法である。
- 参考スコア(独自算出の注目度): 18.132607344833925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The need for modelling causal knowledge at different levels of granularity arises in several settings. Causal Abstraction provides a framework for formalizing this problem by relating two Structural Causal Models at different levels of detail. Despite increasing interest in applying causal abstraction, e.g. in the interpretability of large machine learning models, the graphical and parametrical conditions under which a causal model can abstract another are not known. Furthermore, learning causal abstractions from data is still an open problem. In this work, we tackle both issues for linear causal models with linear abstraction functions. First, we characterize how the low-level coefficients and the abstraction function determine the high-level coefficients and how the high-level model constrains the causal ordering of low-level variables. Then, we apply our theoretical results to learn high-level and low-level causal models and their abstraction function from observational data. In particular, we introduce Abs-LiNGAM, a method that leverages the constraints induced by the learned high-level model and the abstraction function to speedup the recovery of the larger low-level model, under the assumption of non-Gaussian noise terms. In simulated settings, we show the effectiveness of learning causal abstractions from data and the potential of our method in improving scalability of causal discovery.
- Abstract(参考訳): 様々なレベルの粒度で因果的知識をモデル化する必要性は、いくつかの設定で生じる。
因果抽象化(Causal Abstraction)は、2つの構造因果モデルを異なるレベルの詳細で関連付けることにより、この問題を形式化するフレームワークを提供する。
因果的抽象化の適用への関心が高まっているにもかかわらず、例えば、大規模機械学習モデルの解釈可能性において、因果的モデルを他の因果的モデルを抽象化できるグラフィカルおよびパラメトリック的条件は知られていない。
さらに、データから因果的抽象化を学ぶことは、依然としてオープンな問題である。
本研究では、線形抽象関数を持つ線形因果モデルについて、両方の問題に取り組む。
まず、低レベルの係数と抽象関数が高レベルの係数を決定する方法と、高レベルのモデルが低レベルの変数の因果順序をいかに制約するかを特徴付ける。
そこで我々は,観測データから高次・低次因果モデルとその抽象関数を学習するために理論的結果を適用した。
特に,非ガウス雑音項を前提として,学習された高次モデルと抽象関数によって引き起こされる制約を利用して,より大規模な低次モデルの回復を高速化するAbs-LiNGAMを導入する。
シミュレーション環境では、データから因果的抽象化を学習することの有効性と、因果的発見のスケーラビリティを向上させる方法の可能性を示す。
関連論文リスト
- Building Minimal and Reusable Causal State Abstractions for
Reinforcement Learning [63.58935783293342]
Causal Bisimulation Modeling (CBM) は、各タスクのダイナミクスと報酬関数の因果関係を学習し、最小限のタスク固有の抽象化を導出する手法である。
CBMの学習された暗黙的ダイナミクスモデルは、明確なものよりも根底にある因果関係と状態抽象化を正確に識別する。
論文 参考訳(メタデータ) (2024-01-23T05:43:15Z) - Neural Causal Abstractions [63.21695740637627]
我々は、変数とそのドメインをクラスタリングすることで、因果抽象化の新しいファミリーを開発する。
本稿では,ニューラルネットワークモデルを用いて,そのような抽象化が現実的に学習可能であることを示す。
本実験は、画像データを含む高次元設定に因果推論をスケールする方法を記述し、その理論を支持する。
論文 参考訳(メタデータ) (2024-01-05T02:00:27Z) - Finding Alignments Between Interpretable Causal Variables and
Distributed Neural Representations [62.65877150123775]
因果抽象化は、説明可能な人工知能のための有望な理論的枠組みである。
既存の因果抽象法では、高レベルモデルと低レベルモデルの間のアライメントをブルートフォースで探索する必要がある。
これらの制約を克服する分散アライメントサーチ(DAS)を提案する。
論文 参考訳(メタデータ) (2023-03-05T00:57:49Z) - Does Deep Learning Learn to Abstract? A Systematic Probing Framework [69.2366890742283]
抽象化はディープラーニングモデルにとって望ましい機能であり、具体的なインスタンスから抽象概念を誘導し、学習コンテキストを超えて柔軟に適用することを意味する。
本稿では,伝達可能性の観点から,ディープラーニングモデルの抽象化能力を検討するための体系的探索フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-23T12:50:02Z) - Learning Latent Structural Causal Models [31.686049664958457]
機械学習タスクでは、画像ピクセルや高次元ベクトルのような低レベルのデータを扱うことが多い。
本稿では,潜在構造因果モデルの因果変数,構造,パラメータについて共同推論を行う,抽出可能な近似推定手法を提案する。
論文 参考訳(メタデータ) (2022-10-24T20:09:44Z) - Towards Computing an Optimal Abstraction for Structural Causal Models [16.17846886492361]
我々は抽象学習の問題に焦点をあてる。
我々は,情報損失の具体的な尺度を提案し,その新しい抽象化の学習への貢献について説明する。
論文 参考訳(メタデータ) (2022-08-01T14:35:57Z) - Causal Dynamics Learning for Task-Independent State Abstraction [61.707048209272884]
タスク独立状態抽象化(CDL)のための因果ダイナミクス学習を導入する。
CDLは、状態変数とアクションの間の不要な依存関係を取り除く理論的に証明された因果ダイナミクスモデルを学ぶ。
状態抽象化は、学習されたダイナミクスから導き出すことができる。
論文 参考訳(メタデータ) (2022-06-27T17:02:53Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
AIと因果関係の中心的な目標は、抽象表現と因果構造を共同で発見することである。
因果誘導を研究するための既存の環境は、複雑なタスク固有の因果グラフを持つため、この目的には適していない。
本研究の目的は,高次変数の学習表現と因果構造の研究を促進することである。
論文 参考訳(メタデータ) (2021-07-02T05:44:56Z) - Causal Inference with Deep Causal Graphs [0.0]
パラメトリック因果モデリング技術は、カウンターファクト推定の機能を提供することはめったにない。
Deep Causal Graphsは、因果分布をモデル化するニューラルネットワークに必要な機能の抽象的な仕様である。
複雑な相互作用をモデル化する上で,その表現力を示し,機械学習の説明可能性と公正性を示す。
論文 参考訳(メタデータ) (2020-06-15T13:03:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。