論文の概要: On the Sample Complexity of Set Membership Estimation for Linear Systems with Disturbances Bounded by Convex Sets
- arxiv url: http://arxiv.org/abs/2406.00574v3
- Date: Wed, 10 Sep 2025 09:40:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-11 15:16:51.914782
- Title: On the Sample Complexity of Set Membership Estimation for Linear Systems with Disturbances Bounded by Convex Sets
- Title(参考訳): 凸集合で束縛された外乱を持つ線形系の集合メンバーシップ推定のサンプル複素性について
- Authors: Haonan Xu, Yingying Li,
- Abstract要約: 本稿では,線形制御系における集合メンバシップ識別について再検討する。
持続的な励起要求とシステム障害に関する緩和された仮定の下で収束率を確立する。
- 参考スコア(独自算出の注目度): 13.426300917962712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper revisits the set membership identification for linear control systems and establishes its convergence rates under relaxed assumptions on (i) the persistent excitation requirement and (ii) the system disturbances. In particular, instead of assuming persistent excitation exactly, this paper adopts the block-martingale small-ball condition enabled by randomly perturbed control policies to establish the convergence rates of SME with high probability. Further, we relax the assumptions on the shape of the bounded disturbance set and the boundary-visiting condition. Our convergence rates hold for disturbances bounded by general convex sets, which bridges the gap between the previous convergence analysis for general convex sets and the existing convergence rate analysis for $\ell_\infty$ balls. Further, we validate our convergence rates by several numerical experiments. This manuscript contains supplementary content in the Appendix.
- Abstract(参考訳): 本稿では、線形制御系に対する設定されたメンバシップ識別を再検討し、緩和された仮定の下で収束率を確立する。
i) 持続的励磁要件及び
(ii)システム障害。
特に、持続的な励起を正確に仮定する代わりに、ランダムな摂動制御ポリシによって可能となるブロックマーチンゲール小球条件を採用し、高い確率で中小企業の収束率を確立する。
さらに,境界外乱集合の形状と境界視認条件の仮定を緩和する。
我々の収束速度は一般凸集合が有界な外乱に対して成り立ち、これは一般凸集合に対する前の収束解析と$\ell_\infty$球に対する既存の収束速度解析とのギャップを埋める。
さらに,いくつかの数値実験により収束率を検証した。
この写本は、Appendixに補足的な内容を含んでいる。
関連論文リスト
- NDCG-Consistent Softmax Approximation with Accelerated Convergence [67.10365329542365]
本稿では,ランキングの指標と直接一致した新たな損失定式化を提案する。
提案したRG損失を高効率な Alternating Least Squares (ALS) 最適化手法と統合する。
実世界のデータセットに対する実証的な評価は、我々のアプローチが同等または上位のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2025-06-11T06:59:17Z) - CLUE: Neural Networks Calibration via Learning Uncertainty-Error alignment [7.702016079410588]
CLUE(Calibration via Learning Uncertainty-Error Alignment)は,学習中の予測不確かさを観測誤差と整合させる新しい手法である。
CLUEは,最先端のアプローチに対して,キャリブレーション品質と競争予測性能に優れることを示す。
論文 参考訳(メタデータ) (2025-05-28T19:23:47Z) - Data-Driven Calibration of Prediction Sets in Large Vision-Language Models Based on Inductive Conformal Prediction [0.0]
動的しきい値キャリブレーションとクロスモーダル整合性検証を統合したモデル非依存不確実性定量化法を提案する。
このフレームワークは、様々なキャリブレーションとテストの分割比で安定したパフォーマンスを実現し、医療、自律システム、その他の安全に敏感な領域における現実的な展開の堅牢性を強調している。
この研究は、マルチモーダルAIシステムにおける理論的信頼性と実用性の間のギャップを埋め、幻覚検出と不確実性を考慮した意思決定のためのスケーラブルなソリューションを提供する。
論文 参考訳(メタデータ) (2025-04-24T15:39:46Z) - Supervised Optimism Correction: Be Confident When LLMs Are Sure [91.7459076316849]
教師付き微調整とオフライン強化学習の間には,新たな理論的関係が確立されている。
広く使われているビームサーチ法は、許容できない過度な最適化に悩まされていることを示す。
本稿では,トークンレベル$Q$-value推定のための簡易かつ効果的な補助的損失を導入したSupervised Optimism Correctionを提案する。
論文 参考訳(メタデータ) (2025-04-10T07:50:03Z) - Beyond Non-Degeneracy: Revisiting Certainty Equivalent Heuristic for Online Linear Programming [18.371947752008744]
この結果から,不確実性等価性は分布の微妙な仮定の下で一様に近い最適後悔を達成できることが示唆された。
以上の結果から,CE は従来の信念とは対照的に,幅広い問題事例に対する退化の呪いを効果的に打ち負かしていると考えられる。
これらの手法は、より広範なオンライン意思決定コンテキストにおける潜在的な応用を見出すことができる。
論文 参考訳(メタデータ) (2025-01-03T09:21:27Z) - Distributionally Robust Policy and Lyapunov-Certificate Learning [13.38077406934971]
不確実なシステムに対する安定性を保証するコントローラの設計における重要な課題は、オンラインデプロイメント中のモデルパラメトリック不確実性の変化の正確な決定と適応である。
我々は、リアプノフ証明書の単調な減少を保証するために、リアプノフ微分チャンス制約を分布的に頑健に定式化することで、この問題に取り組む。
得られた閉ループシステムに対して、その平衡のグローバルな安定性は、アウト・オブ・ディストリビューションの不確実性があっても高い信頼性で証明できることを示す。
論文 参考訳(メタデータ) (2024-04-03T18:57:54Z) - f-FERM: A Scalable Framework for Robust Fair Empirical Risk Minimization [9.591164070876689]
本稿では、f-divergence measures(f-FERM)に基づく公正な経験的リスクに対する統一的な最適化フレームワークを提案する。
さらに,f-FERMによるほぼ全てのバッチサイズに対するフェアネス・精度トレードオフの優位性を実証した。
我々の拡張は、不確実集合として$L_p$ノルムの下で f-FERM の目的を分布的に頑健に最適化する手法に基づいている。
論文 参考訳(メタデータ) (2023-12-06T03:14:16Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Learning the Uncertainty Sets for Control Dynamics via Set Membership: A Non-Asymptotic Analysis [18.110158316883403]
本稿では,未知の線形システムに対するセットメンバシップ推定(SME)に焦点を当てる。
本稿では,中小企業の収束率境界について述べるとともに,緩和された仮定の下での中小企業の変動について論じる。
また,中小企業の実用性を示す数値的な結果も提供する。
論文 参考訳(メタデータ) (2023-09-26T03:58:06Z) - A Robustness Analysis of Blind Source Separation [91.3755431537592]
ブラインドソース分離(BSS)は、変換$f$が可逆であるが未知であるという条件の下で、その混合である$X=f(S)$から観測されていない信号を復元することを目的としている。
このような違反を分析し、その影響を$X$から$S$のブラインドリカバリに与える影響を定量化するための一般的なフレームワークを提案する。
定義された構造的仮定からの偏差に対する一般的なBSS溶出は、明示的な連続性保証という形で、利益的に分析可能であることを示す。
論文 参考訳(メタデータ) (2023-03-17T16:30:51Z) - Monotonic Improvement Guarantees under Non-stationarity for
Decentralized PPO [66.5384483339413]
我々は,MARL(Multi-Agent Reinforcement Learning)における分散政策の最適化のための新しい単調改善保証を提案する。
本研究では,訓練中のエージェント数に基づいて,独立した比率を限定することにより,信頼領域の制約を原則的に効果的に実施可能であることを示す。
論文 参考訳(メタデータ) (2022-01-31T20:39:48Z) - Keep it Tighter -- A Story on Analytical Mean Embeddings [0.6445605125467574]
カーネル技術は、データサイエンスにおいて最も人気があり柔軟なアプローチの一つである。
平均埋め込みは、最大平均不一致(MMD)と呼ばれる分岐測度をもたらす。
本稿では,基礎となる分布の1つの平均埋め込みが解析的に利用可能である場合のMDD推定の問題に焦点をあてる。
論文 参考訳(メタデータ) (2021-10-15T21:29:27Z) - Tight Mutual Information Estimation With Contrastive Fenchel-Legendre
Optimization [69.07420650261649]
我々はFLOと呼ばれる新しい,シンプルで強力なコントラストMI推定器を提案する。
実証的に、我々のFLO推定器は前者の限界を克服し、より効率的に学習する。
FLOの有効性は、広範囲なベンチマークを用いて検証され、実際のMI推定におけるトレードオフも明らかにされる。
論文 参考訳(メタデータ) (2021-07-02T15:20:41Z) - Relative Deviation Margin Bounds [55.22251993239944]
我々はRademacher複雑性の観点から、分布依存と一般家庭に有効な2種類の学習境界を与える。
有限モーメントの仮定の下で、非有界な損失関数に対する分布依存的一般化境界を導出する。
論文 参考訳(メタデータ) (2020-06-26T12:37:17Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
重要なアプリケーションでは,効果的な推定が依然として可能であることを示す。
我々のアプローチは、定常分布と経験分布の差を補正する比率を推定することに基づいている。
結果として得られるアルゴリズム、GenDICEは単純で効果的である。
論文 参考訳(メタデータ) (2020-02-21T00:27:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。