論文の概要: Model Predictive Control and Reinforcement Learning: A Unified Framework Based on Dynamic Programming
- arxiv url: http://arxiv.org/abs/2406.00592v1
- Date: Sun, 2 Jun 2024 02:01:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 04:16:01.275186
- Title: Model Predictive Control and Reinforcement Learning: A Unified Framework Based on Dynamic Programming
- Title(参考訳): モデル予測制御と強化学習:動的プログラミングに基づく統一フレームワーク
- Authors: Dimitri P. Bertsekas,
- Abstract要約: 近似動的プログラミング(DP)、モデル予測制御(MPC)、強化学習(RL)を結合する新しい概念的枠組みについて述べる。
このフレームワークは2つのアルゴリズムを中心に設計されており、ニュートンの手法の強力なメカニズムを通じて互いに独立に設計され、シナジーで動作している。
- 参考スコア(独自算出の注目度): 1.223779595809275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we describe a new conceptual framework that connects approximate Dynamic Programming (DP), Model Predictive Control (MPC), and Reinforcement Learning (RL). This framework centers around two algorithms, which are designed largely independently of each other and operate in synergy through the powerful mechanism of Newton's method. We call them the off-line training and the on-line play algorithms. The names are borrowed from some of the major successes of RL involving games; primary examples are the recent (2017) AlphaZero program (which plays chess, [SHS17], [SSS17]), and the similarly structured and earlier (1990s) TD-Gammon program (which plays backgammon, [Tes94], [Tes95], [TeG96]). In these game contexts, the off-line training algorithm is the method used to teach the program how to evaluate positions and to generate good moves at any given position, while the on-line play algorithm is the method used to play in real time against human or computer opponents. Significantly, the synergy between off-line training and on-line play also underlies MPC (as well as other major classes of sequential decision problems), and indeed the MPC design architecture is very similar to the one of AlphaZero and TD-Gammon. This conceptual insight provides a vehicle for bridging the cultural gap between RL and MPC, and sheds new light on some fundamental issues in MPC. These include the enhancement of stability properties through rollout, the treatment of uncertainty through the use of certainty equivalence, the resilience of MPC in adaptive control settings that involve changing system parameters, and the insights provided by the superlinear performance bounds implied by Newton's method.
- Abstract(参考訳): 本稿では、近似動的プログラミング(DP)、モデル予測制御(MPC)、強化学習(RL)を結合する新しい概念フレームワークについて述べる。
このフレームワークは2つのアルゴリズムを中心に設計されており、ニュートンの手法の強力なメカニズムを通じて互いに独立に設計され、シナジーで動作している。
オフライントレーニングとオンラインプレイアルゴリズムと呼んでいます。
主な例として、2017年のAlphaZeroプログラム(チェス、[SHS17]、[SSS17])、1990年代のTD-Gammonプログラム(バックギャモン、[Tes94]、[Tes95]、[TeG96])などがある。
これらのゲームコンテキストにおいて、オフライントレーニングアルゴリズムは、プログラムに位置を評価し、任意の位置で良い動きを生成する方法を教える方法であり、オンラインプレイアルゴリズムは、人間やコンピュータの対戦相手に対してリアルタイムにプレイする手法である。
重要なことに、オフライントレーニングとオンラインプレイの相乗効果は、MPC(および他のシーケンシャルな決定問題の主要なクラス)の基盤にもなり、実際、MPC設計アーキテクチャはAlphaZeroとTD-Gammonのものと非常によく似ている。
この概念的な洞察は、RLとMPCの文化的ギャップを埋める手段を提供し、MPCの基本的な問題に新たな光を当てる。
これには、ロールアウトによる安定性の強化、確実性等価性による不確実性処理、システムパラメータの変更を含む適応制御設定におけるMPCのレジリエンス、ニュートン法によって示唆された超線形性能境界による洞察などが含まれる。
関連論文リスト
- Zero-Sum Positional Differential Games as a Framework for Robust Reinforcement Learning: Deep Q-Learning Approach [2.3020018305241337]
本稿では、位置微分ゲーム理論におけるRRL問題を考慮した最初の提案である。
すなわち、イザックの条件の下では、同じQ-函数をミニマックス方程式とマクシミン・ベルマン方程式の近似解として利用することができる。
本稿ではIssas Deep Q-Networkアルゴリズムについて,他のベースラインRRLやMulti-Agent RLアルゴリズムと比較して,その優位性を示す。
論文 参考訳(メタデータ) (2024-05-03T12:21:43Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
オフライン強化学習(RL)パラダイムは、静的な行動データセットを、データを収集したポリシーよりも優れたパフォーマンスのポリシーに変換するためのレシピを提供する。
本稿では,アクション量子化のための適応型スキームを提案する。
IQL,CQL,BRACといった最先端のオフラインRL手法が,提案手法と組み合わせることで,ベンチマークのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2023-10-18T06:07:10Z) - Model Predictive Control via On-Policy Imitation Learning [28.96122879515294]
我々は,データ駆動型モデル予測制御のための新しいサンプル複雑性結果と性能保証を開発する。
我々のアルゴリズムは制約付き線形MPCの構造を用いており、解析は明示的なMPC解の特性を用いて、最適性能を達成するのに必要なオンラインMPCトラジェクトリの数を理論的に制限する。
論文 参考訳(メタデータ) (2022-10-17T16:06:06Z) - A Unified Framework for Alternating Offline Model Training and Policy
Learning [62.19209005400561]
オフラインモデルに基づく強化学習では、歴史的収集データから動的モデルを学び、学習モデルと固定データセットを用いてポリシー学習を行う。
提案手法は,本手法が期待するリターンを最小限に抑えるための,反復的なオフラインMBRLフレームワークを開発する。
提案する統一型モデル政治学習フレームワークにより、我々は、広範囲の連続制御オフライン強化学習データセット上での競合性能を実現する。
論文 参考訳(メタデータ) (2022-10-12T04:58:51Z) - Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning [92.18524491615548]
対照的な自己指導型学習は、(深層)強化学習(RL)の実践にうまく統合されている
我々は,低ランク遷移を伴うマルコフ決定過程(MDP)とマルコフゲーム(MG)のクラスにおいて,コントラスト学習によってRLをどのように強化できるかを検討する。
オンライン環境下では,MDPやMGのオンラインRLアルゴリズムと対照的な損失を生かした,新しい高信頼境界(UCB)型アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-29T17:29:08Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline
Reinforcement Learning [114.36124979578896]
オフライン強化学習アルゴリズムを用いて動的メカニズムを設計する。
我々のアルゴリズムは悲観主義の原理に基づいており、オフラインデータセットのカバレッジについて軽度な仮定しか必要としない。
論文 参考訳(メタデータ) (2022-05-05T05:44:26Z) - A Subgame Perfect Equilibrium Reinforcement Learning Approach to
Time-inconsistent Problems [4.314956204483074]
我々は,時間一貫性(TIC)問題に対するサブゲーム完全均衡強化学習フレームワークを構築した。
我々は,SPERLを解き,両課題に対処する,BPI(backward Policy iteration)と呼ばれるアルゴリズムの新たなクラスを提案する。
トレーニングフレームワークとしてのBPIの実用性を実証するため,標準的なRLシミュレーション手法を適用し,2つのBPIベースのトレーニングアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-10-27T09:21:35Z) - Geometric Deep Reinforcement Learning for Dynamic DAG Scheduling [8.14784681248878]
本稿では,現実的なスケジューリング問題を解決するための強化学習手法を提案する。
高性能コンピューティングコミュニティにおいて一般的に実行されるアルゴリズムであるColesky Factorizationに適用する。
我々のアルゴリズムは,アクター・クリティカル・アルゴリズム (A2C) と組み合わせてグラフニューラルネットワークを用いて,問題の適応表現をオンザフライで構築する。
論文 参考訳(メタデータ) (2020-11-09T10:57:21Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。